

A 'S eat of the Pants' Displacement A Igorithm

Rupert Brooks
Natural Resources Canada and
Carleton University
brooks@nrcan.gc.ca
Dagstuhl, 06/05/2001

Generalisation at the National Atlas of Canada

- Like most NMA's, moving to an infrastructure based approach
- No longer maintaining multiple datasets at varied scales
- Deriving many scales from one of a few sets of *framework data*.
- We talked the talk but could we walk the walk?

A Test Project

- Complete reconstruction of 1:4M paper map of the Northern Territories.
- Hydrology to be derived from the 1:1M Canadian Framework Hydrology layer.
- Many challenges
 - the hydrology data was incomplete
 - only some software, and not "industrial strength"
 - skeptical cartographers

Philosophical Approach

- Never expected a perfect solution
- Sought a solution which reduced cost and workload of the manual process
- Never expected on-the-fly results
- Storage of intermediate products was fine so long as they were automatically produced

Model & Cartographic Generalisation

- Model or database generalisation
 - Selecting the set of features / attributes to appear
 - Used algorithms from Dianne Richardson and Robert Thomson
- Cartographic Generalisation
 - renders the features for visualisation
 - subjective; ultimate goal communication

Generalisation Operators

- Simplification / Characterisation
- Smoothing
- Aggregation
- Displacement
- Exaggeration
 - All have the elusive goal of maintaining the character of the cartographic feature
 - Success is *subjective*, therefore

It was difficult... but successful

- This process worked 1:4M northern map.
- The hydrology derived from 1:1M framework data
- Used automated tools that took the data part way to a final product.
- Experienced cartographers brought the result the rest of the way.

Lessons learned

- Highly structured and attributed data a necessity
- Data construction more expensive than generalisation - either automatic or manual
- Must rely on the many spin-off benefits of data structuring to make the proposition economical

The Production Process

- Prepare the Framework data
- Model generalisation (selection)
- Cartographic
 Generalisation
- Refinement by professional cartographer

Displacement

- Required for islands
- Required in short time frame
- Implemented in Arc/Info and Perl
- Many corners cut at implementation time
- Significant room for improvement
- Computationally intensive runs of hours quite common

The Model

- Rigid objects Repulsive Force
 - (Similar to Lonergan and Jones (99) but less sophisticated)
- Based on the idea of reverse gravity
 - Objects too irregular and close to use centroids
 - falls off more rapidly with distance
 - No rotation, or inertia
- Parameter: minimum visible distance, d.

Displacement Algorithm

- 1. Select features which may be displaced
- 2. Buffer (width d) those features to identify interacting clusters
- 3. Determine distance and bearing between each object based on an average of distance and bearing between closest 5 vertices
- 4. Compute the force exerted by object A on B as: $\overline{F} = \frac{10^6 \cdot Area(A)}{d_{AB}^3} \cdot \overline{e}$
- 5. Sum Forces on each object
- 6. Compute the movement of each object as $disp = \frac{F}{\ln(Area(B))}$
- 7. Move the objects. (Limit move to d/2)
- 8. Check for interference.
- 9. While interference exists
 - 9.1 Move one of the interfering objects to its original position
 - 9.2 Check for interference again

Area of Interest

Natural Resources Canada

A close up example - both good and bad

3. Calculate interactions

A close up example - both good and bad

A close up example - both good and bad

Result

- Simplistic
- Occasional failures
- Long running times
- But effective enough in practice

Rewriting the algorithm

- Computationally intensive
- Within a cluster, computation requires
 O(v²) operations (v-#vertices)
- Original implementation inefficient for many reasons
- Explore efficiencies due to hardware, language and parallelism

Reimplementation

- Reimplemented steps 3-5 at Carleton U.
 - using C++ on Intel / Linux systems
 - using MPI library for parallelisation
- Verified implementation by direct comparison with system running at NRCan

E fficiency gains

- Hardware / OS
 - Intel PII-400 / Linux is about 3 times faster than Sun Ultra10 / Solaris (and about 3 times cheaper)
- Language
 - -C++ implementation at least 20 times faster than Perl

Parallelisation

- Clusters can be shown to be independent
 - Model has defined no influence between clusters
 - Each cluster has no neighbors closer than d
 - Each element in the cluster can move a maximum of d/2
 - Therefore, no topological problem can be created between clusters

Statistical behavior of clusters

Naïve assignment of data to nodes

- Clusters were assigned to nodes in an arbitrary order
- For "large enough" dataset work should be assigned relatively evenly among the nodes
- Preliminary results show that this is true, but "large enough" may be quite large

Average performance of parallel nodes

Conclusions

- The Generalisation techniques used to produce the National Atlas 1:4M map worked inefficiently
- We have shown significant performance increases through hardware changes, language changes and parallel implementation

Conclusions (2)

- We have shown that the algorithm behaves nicely in parallel if the dataset is large enough
- Better assignment of clusters to nodes may give better performance on smaller datasets

