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Abstract

This thesis examines methods for efficient and reliable image registration in the con-

text of computer vision and medical imaging. Direct, parameterized image registration

approaches work by minimizing a difference measure between a fixed reference image,

and the image warped to match it. The calculation of this difference measure is the

most computationally intensive part of the process and for faster registration it either

has to be calculated faster, or calculated fewer times. Both possibilities are addressed

in detail.

Efficiency and reliability are addressed in four ways (1) Methods are presented for

generalizing the Gauss-Newton Hessian approximation to the non-least squares case,

and for the optimal selection of scaling factors for the transformation parameters.

Both of these enhance performance by enabling optimization algorithms to perform

fewer evaluations of the difference measure. The performance of a wide range of opti-

mization algorithms is analyzed both theoretically and experimentally, and guidelines

are presented for optimizer selection based on the characteristics of the registration

problem. (2) Using only a portion of the available pixels results in faster calculation

but suffers from a potential loss of accuracy. An algorithm is presented which ap-

plies formal deliberation control methods to managing this tradeoff. By managing

the amount of image data used at every evaluation of the cost function, the algorithm

adapts to the nature of the images and the stage of the optimization. This adaptive

approach allows greater efficiency without sacrificing reliability. (3) It is shown that

the scale used to compute the derivative is a critical factor to consider when selecting

subsets of pixels for registration, that has largely been ignored in previous work. Fi-

nally, (4) two existing efficient registration approaches, the inverse compositional, and

efficient second order algorithms, rely on specialized optimizer update steps and spe-

cialized parameterizations. A generalization of these methods is presented that both

identifies the connections between them, and eliminates the need for these specialized

components.

Throughout the thesis, application specific approaches have been avoided. Both

2D and 3D images from both computer vision and medical imaging applications have

been used throughout. Consequently each of the efficient registration methods can be

applied, alone or in combination, to a very wide range of problems.
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Résumé

Cette thèse examine différentes méthodes efficaces et fiables de recalage dans les con-

textes de la vision numérique et de l’imagerie médicale. Les approches directes min-

imisent une mesure de différence entre une image de référence (fixe) et sa version

déformée. Le calcul de cette mesure constitue la partie la plus intensive du proces-

sus. Pour un recalage rapide, la mesure doit être calculée plus rapidement, ou moins

souvent. Les deux possibilités sont discutées en détail dans la thèse.

Le rendement et la fiabilité sont abordés de quatre manières différentes. (1)

Le nombre de calculs peut être diminué en généralisant l’approximation de Gauss-

Newton de la matrice hessienne pour une fonction de coût autre que de type moin-

dres carrés, ou par la sélection optimale d’un facteur d’échelle pour les paramètres de

la transformation. Les performances d’une variété d’algorithmes d’optimisation sont

analysées, et des lignes directrices sont proposées pour la sélection d’un optimiseur

basée sur les caractéristiques du problème de recalage. (2) L’utilisation d’une portion

des pixels résultent en un calcul plus rapide de la mesure de différence, mais peut

engendrer une perte d’exactitude. Un algorithme basé sur le principe du contrôle

de délibération est proposé afin de gérer ce compromis. La gestion de la quantité

d’information utilisée à chaque évaluation de la fonction de coût permet une adap-

tation à la nature des images ainsi qu’au stade de l’optimisation. Cette approche

permet un haut rendement sans sacrifier la fiabilité. (3) Le facteur d’échelle utilisé

pour le calcul des dérivées a rarement été abordé. Il est démontré que ce facteur est

critique pour la sélection de sous-ensembles de pixels pour le recalage. Finalement,

(4) La méthode compositionnelle inverse et la méthode à haut rendement du second

ordre sont basées sur des itérations de l’optimiseur ainsi que sur des paramétrisations

spécialisées. Une généralisation de ces deux méthodes est présentée en relevant leurs

liens, et en éliminant le recours aux éléments spécialisés.

La thèse aborde le recalage d’une manière générale, et les approches développées

pour des applications spécifiques ont été évitées. Des données bi et tridimensionnelles

provenant des contextes de la vision numérique et de l’imagerie médicale ont été

utilisées pour tester les différents aspects discutés. Par conséquent, les méthodes

proposées de recalage efficace peuvent être appliquées, seules ou de façon combinée,

à une grande variété de problèmes.
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Chapter 1

Introduction

Image registration is the process of finding the spatial relationship between two or

more images. This is a very fundamental idea, and image registration forms a key

component of a wide range of applications, including intraoperative image guid-

ance (e.g., [5, 54, 160]), template based tracking (e.g., [66, 71]), the construction

of anatomic atlases from sets of patient data (e.g., [76, 112]), the georeferencing of

remotely sensed images (e.g., [55, 204]), vision guided control of robotic manipulators

(visual servoing, e.g., [60, 139]), superresolution (e.g., [98, 111]) and video coding

(e.g., [72]), to name just a few. It is not surprising then, that registration is one of

the oldest and most frequently recurring problems in computer vision and medical

imaging.

All these applications benefit from fast and reliable methods, but certain appli-

cations stand out as being particularly time-sensitive. Tracking, visual servoing and

video coding, for example, must often be done at or near video frame rates. However,

I was particularly motivated to conduct this research by image registration problems

arising in image guided neurosurgery (e.g., [5, 54, 160]). Surgery on the brain is a

carefully planned and precise process and the surgical planning is usually done on im-

ages taken preoperatively. However, during the procedure, the patient’s brain changes

shape, resulting in a brainshift of up to 5 cm [129], which reduces the effectiveness

of the preoperative images for guidance. The shift must be determined by relating

the coordinate systems of the preoperative, and the intraoperative images, in other

words, by solving an image registration problem.
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This motivating problem is typically characterized by having large 3D volumetric

images of different modalities, using curved – but not arbitrarily complex – warps,

and having a fairly good starting estimate of the final transformation. Direct, pa-

rameterized, image registration algorithms are particularly appropriate for this con-

text [91, 145], but they have a tendency to be slow. Speed is important in this context,

and it goes without saying that reliability is also critical.

However, while this was my original motivation, this is not a thesis about image

guided surgery problems, but a thesis about direct image registration. Image reg-

istration has an enormous range of applications, and has been addressed by many

authors, in many contexts. In this work I have approached the direct image regis-

tration problem itself and abstracted and incorporated results from many fields. I

believe that engineering should proceed from general principles to specific solutions,

and in each component of this thesis I have tried to first abstract a general theory,

and then rigorously test it by experimenting on a range of image types. Best results

will always be obtained by tuning an approach to the problem at hand. It is not my

intention to avoid that tuning, but to guide it in a principled way. Throughout this

work it has been my goal to discover the abstract principles that should be used to

guide specific implementations for direct image registration problems.

In Chapter 4, I address the issue of optimizer selection in direct registration prob-

lems. Of necessity, this work has a large experimental component, but before perform-

ing the experimental analysis, I present a theoretical analysis of why the algorithms

perform as they do. It is my hope that this will enable future engineers to make

good judgments about optimization choices for their application, without having to

run a battery of empirical tests themselves. In Chapter 5, I address the issue of how

many pixels to use. Rather than giving a particular number as an answer, I have

instead provided a system to automatically determine how many to use. I also ask

the question: Why should we choose only a single amount? The system I present

adapts the amount at every step. Chapter 6 questions the commonly used heuris-

tic of selecting pixels of high derivative. I show that the scale used to compute the

derivative upon which the selection is based is a critical factor in determining the

reliability of such an approach. This understanding enables prediction of when that

heuristic will be effective, and when it will not. Finally, in Chapter 7 I discuss the
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inverse compositional and the efficient second order methods. These are examples of

methods that have become popular in some fields, i.e., computer vision and robotics,

but have remained nearly unknown in others, i.e., medical imaging. It is my view

that the fundamental contributions of both of these methods are clever, effective ways

of computing the derivatives of the cost function. Viewed in this manner, I show how

these approaches can be generalized to remove the remaining complexities of their

current implementations. It is my hope that this will make their adoption in a wide

range of problems easy and practical.

This is neither a wholly theoretical, nor a wholly experimental thesis. I have

approached each component with the goal of abstracting general themes, but in each

case I have thoroughly tested the application of these ideas. In many cases, the

experimental results give further interesting insights into the general principles at

work. The experimental cases may seem slightly abstracted, one step removed from

real clinical problems. This is intentional – a major focus was to keep the experiments

objective, controlled, and avoid dependence on special characteristics of the data. Real

clinical or other problems come with baggage that may impede clear and objective

comparisons of algorithmic approaches.

In the following section, I will first define the problem of image registration and

describe the categories of ways in which it can be made more computationally efficient.

Section 1.2 describes the specific contributions of this thesis. Section 1.3 then lists

the parts of this thesis that have been published, that are being reviewed, and work

that is closely related, but not specifically covered in this thesis. Finally, Section 1.4

describes the overall structure of the remainder of this document.

1.1 Image Registration

There is a general consensus [41, 62, 138, 181, 208] that registration approaches can be

classified into two main groups: feature based methods, and direct methods. Feature

based registration methods derive a set of features from the images in question, usually

establish correspondence between those feature sets, and derive a registration from

these sets of corresponding features.

Direct methods, on the other hand, operate by optimizing a measure of image
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difference, D, defined directly on the intensities of the images to be registered. In

the standard direct registration approach, a pair of images are registered. One of

the images, referred to as the fixed, or reference image, If (X), is held fixed while

the other, referred to as the moving or template image, Im(X), is deformed by some

transformation, W (X,φ), [145]. Here X is the coordinates of the lattice of image

pixels, and φ is the parameters of the transformation. The set of transformation

parameters which minimizes the difference between the two images is considered to

be the correct solution. This can be expressed as an optimization problem:

φopt = argmin
φ

(D(If (X), Im(W (X,φ))) (1.1)

By far the most computationally intensive part of a direct image alignment process

is the evaluation of the image difference measure, D. There are of course methods

to speed up the process without fundamentally changing the calculation, perhaps

through better programming (e.g., [178]), or through parallelization (e.g., [7, 121,

162]). But to increase efficiency through algorithmic changes can either be addressed

by

1. reducing the number of evaluations of D that are required, or,

2. speeding up the calculation of D itself

Reducing the number of evaluations of D must be achieved by improving the efficiency

of the optimization process. As for speeding up the calculation of D itself, this can

be achieved in two ways. Either

1. by reducing the number of pixels processed, or,

2. by precalculating and caching parts of the difference measure.

This classification of the different approaches is shown conceptually in Figure 1.1. In

this thesis I have made novel contributions to each of these possibilities.

1.2 Contributions

The optimization algorithm is a key component of direct image registration, but its

effect on the image registration process in isolation has not been studied frequently.
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Figure 1.1 A conceptual view of speeding up direct registration

Previous studies [26, 120, 137] have also focused on very specific registration problems

and been very empirical in nature. As a result, it is difficult to generalize their

results to different image registration problems. I have investigated the choice of

optimizer from a principled perspective, so that my conclusions provide guidelines

for future designers of registration algorithms to use in choosing their optimization

algorithm. These conclusions are tested rigorously on both 2D and 3D images, for

five optimization algorithms representative of those widely used in current registration

techniques, over transformations ranging in complexity from 3 to 1029 parameters and

for the three most widely used image difference measures. However, before different

optimization algorithms could be compared in an unbiased way, two issues which had

not been sufficiently addressed by previous work had to be resolved.

First, for the use of Newton-Raphson type optimization methods a Hessian, or

approximate Hessian for the cost function must be calculated. For least squares

problems, an excellent approximation known as the Gauss-Newton approximation

exists [82, 158]. I have shown how this can be generalized to other cost functions,

which is important because, for certain problem configurations, the Newton-Raphson

optimizer is the method of choice. As a product of that generalization, I have also

identified flaws in the existing implementations of Hessians [70, 185] for mutual in-

formation. The flawed Hessian approximation seriously degrades the performance of

Newton-Raphson optimizers.

Next, it is generally known that scaling of the transformation parameters is im-

portant to achieve good results in optimization [59, 80, 85, 151]. However, for image

registration problems this issue has either been ignored, or treated in an ad-hoc way.
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I have identified the role of these scaling parameters, and presented an optimal means

of calculating them. My experimental results show that image registration perfor-

mance on matrix based transforms is greatly enhanced by using the proper parameter

scaling factors.

One of the main ways of speeding up the evaluation of D is to use only some of the

pixels to compute it. However, previous work had not addressed the issue of exactly

how many pixels are actually required. I was the first to adapt a framework developed

in Real-Time Artificial Intelligence, the anytime algorithms [65, 106], to determining

how many pixels are required at each stage of the image registration process. A key

element of my approach is that the amount of data used is not selected once and fixed,

but is adapted at each particular evaluation of the image difference measure. The

experiments show clearly that using an adaptive approach achieves speed gains while

maintaining the reliability and accuracy of the registration. In contrast, selecting an

arbitrary, fixed amount of pixels to use can increase processing speed, but only at the

expense of compromising reliability and accuracy.

If only some pixels will be used it is natural to ask if some are better than others.

There is kind of a conventional wisdom in the field that selecting certain pixels based

on their gradient leads to faster direct image registration. A framework for selecting

pixels which addressed this more formally was proposed in [66]. However, the existing

method suffers from a sometimes severe decrease in reliability. I have identified the

cause of this problem as being due to ignoring the role of the scale of the derivative.

The experiments show that the shape of the cost function is changed significantly by

this pixel selection process, and its capture radius is proportional to the scale of the

derivative used in pixel selection. Thus, the problem can be mitigated by determining

the appropriate scale from the uncertainty of the transformation parameters.

The inverse compositional (IC) alignment algorithm [12] is a well-known efficient

image registration approach. It achieves faster evaluation of D in the second of the

potential ways listed above – by precalculating and caching part of the calculation.

However, its implementation is complicated because it requires an optimization algo-

rithm that uses compositional update steps while most standard optimization algo-

rithms use additive steps. I have shown how it is related to another method developed

in the field of robotics, the efficient second order method (ESM) [139, 140], which ap-
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proaches the problem of registration efficiency by improving the optimization method.

The ESM method was only applicable when the transform was a Lie group param-

eterized along its exponential map. I have shown that both these methods can be

viewed as improved means of computing the derivatives of D with respect to different

sets transformation parameters. The derivatives can be converted to the desired pa-

rameter space by a simple application of the chain rule. This allows the advantages

of these methods to be kept, while removing the restrictions on optimization steps,

and parameterizations. Experiments were performed on both 2D and 3D datasets us-

ing three different optimization algorithms and three different cost functions. These

experiments conclusively show that my generalization of the IC algorithm is as fast

as the original IC algorithm, and in certain cases it proves much more reliable. The

generalization of the ESM algorithm shows a statistically significant improvement in

reliability over the classical image registration implementation.

1.2.1 Summary of Contributions

This research has made the following original contributions:

1. A comparison of optimization algorithms in a manner that allows

selection of an optimizer based on problem characteristics

2. A generalization of the Gauss-Newton Hessian approximation to non-

least squares cost functions

3. A method for automatically determining an optimal linear parame-

terization for image registration problems.

4. The first algorithm to use anytime algorithms for deliberation control

in image registration.

5. An explanation of why pixel selection may reduce reliability and ways

to mitigate this.

6. A generalization of both the inverse compositional alignment and ef-

ficient second order methods which removes restrictions on their ap-

plicability.
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1.3 Published Work

I will now outline all the publications related to the work in this thesis:

Publications Submitted for Review

[34] Rupert Brooks and Tal Arbel. Generalizing inverse compositional and

ESM image alignment. International Journal of Computer Vision, 2008.

SUBMITTED FOR PUBLICATION.

Peer-Reviewed Journal Publications

[39] Rupert Brooks, Tal Arbel, and Doina Precup. Anytime similarity mea-

sures for faster alignment. Computer Vision and Image Understanding,

110(3):378–89, 2008.

Peer-Reviewed Conference Publications

[38] Rupert Brooks, Tal Arbel, and Doina Precup. Fast image alignment

using anytime algorithms. In Proceedings of the 20th International Joint

Conference on Artificial Intelligence (IJCAI2007), pages 2078–2083, Hy-

derabad, India, January 2007.

[33] Rupert Brooks and Tal Arbel. The importance of scale when select-

ing pixels for image registration. In Proceedings of the 4th Canadian

Conference on Computer and Robot Vision (CRV2007), pages 235–242,

Montreal, Canada, May 2007.

[32] Rupert Brooks and Tal Arbel. Generalizing inverse compositional image

alignment. In Proceedings of the 18th International Conference on Pat-

tern Recognition (ICPR2006), volume 2, pages 1200–1203, Hong Kong,

August 2006.
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Other Publications

[36] Rupert Brooks and Tal Arbel. Improvements to the itk::KernelTransform

and subclasses. Insight Journal, March 2007. DSpace handle http:

//hdl.handle.net/1926/494.

[35] Rupert Brooks and Tal Arbel. A homogeneous transform class for the

ITK. Insight Journal, March 2007. DSpace handle http://hdl.handle.

net/1926/493.

[37] Rupert Brooks, D. Louis Collins, and Tal Arbel. Scaling angles and

distances to maximize efficiency of image registration. Short paper pre-

sented at the 8th International Conference on Medical Image Computing

and Computer Aided Intervention (MICCAI 2005), October 2005. avail-

able online http://www.ia.unc.edu/MICCAI2005/ShortPapers/.

Related Work

The work in the following papers does not directly appear in this thesis, but is closely

related to this research.

[40] Rupert Brooks, D. Louis Collins, Xavier Morandi, and Tal Arbel. De-

formable ultrasound registration without reconstruction. In Proceedings

of the 11th International Conference on Medical Image Computing and

Computer Assisted Intervention (MICCAI’08), pages 1023–1031, New

York, USA. 2008.

[6] Michel Audette, Rupert Brooks, Robert Funnell, Gero Strauss, and Tal

Arbel. Piecewise affine initialized spline-based patient-specific registra-

tion of a high-resolution ear model for surgical guidance. In MICCAI

Workshop on Image Guidance and Computer Assistance for Soft-Tissue

Interventions, New York, USA. 2008.

http://hdl.handle.net/1926/494
http://hdl.handle.net/1926/494
http://hdl.handle.net/1926/493
http://hdl.handle.net/1926/493
http://www.ia.unc.edu/MICCAI2005/ShortPapers/
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1.4 Structure of the Thesis

Peer-review is essential to the scientific method, and publication in peer reviewed

forums was an important focus throughout this research. As a result, this document

is structured in a very modular fashion. Each chapter and even certain sections of

chapters are relatively independent. In what is perhaps an uncommon structure for a

thesis, I have located the experimental results in the text immediately following the

theory they are designed to test. It is hoped that the reader will find this convenient,

as it avoids cross-referencing between widely separated areas of the text.

Image registration is a large domain, and a review only focused narrowly on the

work relevant to each contribution would not present a broad perspective to the

reader. The following chapter reviews the domain of image registration from a high

level, historical perspective. This big picture is then supplemented in each chapter

with a focused review of the literature relevant to the particular contributions being

discussed there. Despite the modular structure, nearly all the work presented was

performed using a common set of algorithms, a common implementation and a com-

mon statistical testing framework. Chapter 3 describes these components that are

common to all the subsequent chapters. An effort has also been made to use consis-

tent mathematical notation throughout, and the reader may find the mathematical

glossary in Appendix A helpful.

Recall that image registration can be made more efficient by either better opti-

mization algorithms, which evaluate D fewer times, by computing D faster by using

only some of the data, or by computing D faster through precalculation of certain

components. Chapter 4 is focused on the first option and discusses the choice of op-

timization algorithms for image registration problems. In order to make this choice,

it is necessary to properly scale the transformation parameters, and, for Newton-

Raphson optimizers, to properly compute approximate Hessian matrices. Chapter 4

also describes a generalization of the Gauss-Newton Hessian approximation and a

method for determining optimal scaling parameters that are used in the remainder

of the thesis. Chapter 5 addresses the second option by investigating the issue of

how many pixels should be used and presents a framework for managing the trade-

off between computation time and accuracy. Chapter 6 considers the popular idea

of choosing pixels of high derivative, and shows that previous approaches have ne-
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glected to consider the scale over which the derivative is valid. Chapter 7 is mainly

focused on the precalculation and caching approach. It presents a generalization of

the inverse compositional and ESM alignment algorithms which allows them to be

used without requiring compositional update steps, or special parameterizations of

the transformation. Finally, the overall conclusions of the thesis and suggestions for

future investigation are described in Chapter 8.
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Chapter 2

Overview of the Image

Registration Field

Image registration is required for a very wide range of applications, in fields including,

to name a few, photogrammetry, machine vision, and medical imaging. Contributions

to image registration have flowed in from many different sources, and occasionally

been forgotten and reinvented. This chapter is intended to define the direct parame-

terized registration problem and to give a high-level overview of the image registration

field. It describes the context of development, and the connections between the var-

ious algorithms which this thesis builds upon. This background applies to all the

subsequent chapters. In keeping with the modular nature of this thesis, each chapter

then deals with a focused area of image registration, and contains a focused litera-

ture review relevant to that specific topic. This chapter stays rather conceptual while

Chapter 3 deals with the technical background required.

In the following section, a formal definition for the image registration problem is

given, together with a discussion of its ill-posed nature and methods of regularization.

Section 2.2 provides a very high-level and historical overview of the field, including

a classification of several different types of registration. This thesis is focused on

efficient direct parameterized image registration. An overview of parametric direct

methods is given in Section 2.3 and Section 2.4 discusses previous work that improves

the efficiency of these methods. Section 2.5 provides a review and sets the stage for

the chapters to come.
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2.1 Definitions

Image alignment or registration is the problem of finding a mapping between the co-

ordinate systems of two (or more) images. To discuss registration, we must inevitably

discuss correspondence as a good registration is usually described as one that identifies

meaningful correspondences between features in each image. In this thesis, registra-

tion will be defined as the problem that, given two images defined over spaces U ,V
parameterized by some coordinate systems u,v, find the mapping, u = f(v). Cor-

respondence, on the other hand, is defined as the problem that, given two sets of

features or elements in each image, P ,Q find a bipartite graph G = {P ∪Q, E} where

E is a set of weighted edges between nodes in P ,Q representing correspondences. If

the sets P ,Q are assigned coordinates in some spaces U ,V , then, clearly, a registration

of U and V will imply some correspondence, and a correspondence between P and Q
implies some registration.

As mentioned in Chapter 1, image registration approaches are generally classified

as either feature-based, or direct. Broadly speaking, the feature-based approaches

first search the space of correspondences and then derive the mapping, while direct

approaches to image alignment search the space of possible mappings itself.

In the standard direct registration approach, a pair of images are registered. One

of the images, referred to as the fixed or reference image, If , is held fixed while the

other, referred to as the moving or template image, Im, is deformed by some trans-

formation, W(x,φ) [145]. Here, W is a class of transformation functions (or warps)

parameterized by a vector, φ. That transformation which minimizes the difference

between the two images is considered to be the correct solution. This can be expressed

as an optimization problem:

φopt = argmin
φ

(D(If (X), Im(W (X,φ))) (2.1)

This formulation of the problem provides a general framework, illustrated in Fig-

ure 2.1, for addressing image registration problems. To implement a registration

algorithm, one chooses an image difference measure, transformation, interpolator and

an optimization algorithm, connects them together and runs the optimization [91,

109, 145].
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Although it may seem trivial, it is worth taking a moment to clarify the definition

of an image. An image, I, has a kind of dual nature in the literature. It is frequently

considered to be a function of space, I(x), where x is a coordinate in the space where

the image is defined [145]. This definition allows us to consider the derivative of

the image, and the value of the image function in between pixel locations (which in

practice is found through interpolation). However, an image is also considered as a

set of pixel values. If we take the derivative of a function of an image, such as the

difference measure D, we consider this derivative to be with respect to each pixel in

the image. The image at a set of pixel positions will be written as I = I(X), where X

is the set of coordinates of each pixel in the image, and I is thus a vector with length

equal to the number of pixels in the image. Note that throughout the thesis the word

pixel will be used to denote elements of both two and three dimensional images.

It is also worth noting that the image difference measure is also frequently called

a similarity measure. Optimization algorithms are conventionally discussed in terms

of minimization, and to remain consistent throughout the thesis, the terms difference

measure or cost function will be used, and smaller values will indicate better matching.

However, the term “image distance” which is sometimes used, will be avoided. The

difference measure does not have to be a distance in the technical sense. For example

it may be negative or disobey the triangle inequality.

This pairwise expression of the problem (Equation 2.1) can be extended to deal

with multiple images, in what is called groupwise registration. This can be done

by extending the cost function to operate over multiple images (e.g., [14, 27]), by

combining multiple pairwise cost functions (e.g., [172]), or conceivably both.

2.1.1 Ill-posedness and Regularization

In its most general form, that is when any transformation at all is allowed, the image

registration problem is highly ill-posed due to non-uniqueness of the solution. If all

possible transformations are allowed, then for any difference measure it is possible to

create many perfect matches. Regularization is therefore necessary. Most commonly,

the problem is implicitly regularized by restricting the type of transformation used,

which restricts the space of allowable vector fields [49]. Frequently, this can be justified

based on the physical reality of the problem. For example, when registering two
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Figure 2.1 A conceptual view of the standard, pair-wise registration
approach. Registration consists of optimizing an image difference mea-
sure between a fixed image, and a warped (interpolated) moving image.
The details of optimization algorithms, image difference measures and in-
terpolators are reasonably independent and may be studied separately.
Figure based on [109].

scanned volumes of a patient’s head, it is reasonable to assume they are related by a

rigid transform. In this thesis, only implicit regularization has been used.

When implicit regularization is not enough, there are three types of explicit reg-

ularization in common use [49]. Consistent image registration [52] formulates the

problem bidirectionally. This technique penalizes deviations from perfect symmetry

when switching the roles of the fixed and moving images and is particularly useful

when dealing with warping functions that do not have a closed-form inverse. The

optimization problem may be also be regularized by adding a competitive regularizer

term to Equation 2.1. Common examples of this include the use of the elastic strain

energy [8], or constraints on changes in volume [163]. Finally, the problem may be reg-

ularized incrementally, by penalizing optimization steps that do not conform to some

criteria. The viscous fluid registration model [53] fits into this category. All of these
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regularizations can be included to create an extended version of Equation 2.1 [49]:

φopt = argmin
φ

(
λDif

D1(If , Im,φ) + λDir
D1(Im, If ,φ

−1) + ...

+λDj
Dj(I1, I2, ..., In,φ) + ...

+λRcompRcomp(φ) + ...

+λRincr
Rincr(φ, t))

(2.2)

where the λ... are weights, and each pairwise image difference measures, Di, is com-

puted both forwards, Dif and backwards (i.e., reversing the role of fixed and moving

images), Dir . The Dj represent difference measures defined over multiple images,

and both competitive, Rcomp, and incremental regularizers, Rincr, are included. The

incremental regularizers are functions of the time step, t, as well as the images and

transform.

While this thesis is focused on the pairwise image registration problem, using

implicit regularization only, the applicability of this research is general. Observe that

the general expression (Equation 2.2) still consists mainly of the optimization of image

difference measures, the Di. Thus speeding up image registration still requires either

fewer or faster evaluations of these measures.

2.2 Previous Work: Overview

Numerous surveys of image registration exist. Some are broad in scope, and some

are specific to a particular application. The books by Hajnal et al. [91], Moder-

sitzki [145] and Goshtasby [89] give a good broad coverage of the subject, while the

collection [168] is focused on non-parametric registration. The survey by Brown [41]

gives a good overview of early work (although missing the work of Anuta [3, 4] and

Hobrough [102]). The surveys [100, 138, 155] are focused on medical imaging appli-

cations, and the book by Toga [187] gives a very in depth discussion of registration

exclusively on brain images. In contrast, the overview of direct methods by Irani

and Anandan [110] is very focused on computer vision applications, as is the sur-

vey by Zitova and Flusser [208] which emphasizes feature based methods. Toga and

Thompson [188] provide a discussion of registration in the specific context of creat-
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ing neuroanatomical atlases. Szeliski’s survey [181] is focused on the registration of

images for stitching purposes – mainly panorama creation – but is nevertheless quite

comprehensive.

It would would be very difficult, and probably of very limited use, to attempt to

itemize every instance of image registration in the literature. Instead, this section will

describe the field at a very broad level. It begins with a historical overview of the

developments in the field, to explain how the framework of Figure 2.1 came to be in

current use today. This is followed by a more focused discussion of work specifically

related to improving the efficiency of this image registration framework. Of course,

each of the contributions in the thesis derives from a specific chain of related previous

work. Technical reviews of related work will be deferred until the chapters discussing

each contribution.

2.2.1 Historical Development

Early Work

In 1957, Gilbert Hobrough demonstrated a remarkable machine to his colleagues which

was capable of performing automatic photogrammetric stereoplotting [47]. While

previous devices could register photographs along one axis or another, this was the

first device capable of automatically registering images in two dimensions. This was

achieved using entirely analog electronics through a clever use of a random scanning

pattern [101, 102]. The achievement was of great practical significance because at

that time nearly all geographic mapping was created by a human operator manually

drawing the terrain contours while stereo viewing the aerial photos. By 1965 [103],

a machine had been developed capable of refining a ten parameter distortion model

using only analog means.

The idea reappeared independently, this time using digital images on a digital com-

puter, in Anuta’s 1969 paper [3]. This describes direct image alignment by searching

for a maximum of correlation in the space of possible translations. The procedure

used an exhaustive search of the transformation space, which makes it reminiscent of

template matching approaches. This was followed by a flurry of rather remarkable

papers which set forth many of the broad divisions in the field that continue to exist

today.



18 Overview of the Image Registration Field

The differentiation between direct and feature based approaches to registration

appeared around this time and development of both proceeded side by side. For

example, some of the earliest reported work in recovering vector fields of deformation

from image sequences was done to recover cloud motion for meteorological analysis.

In 1971, Leese et al. [128] proposed a block matching, cross-correlation approach while

Endlich et al. [73] proposed a feature based technique side by side in the very same

journal issue. Direct methods are most appropriate for multimodal image registration

problems involving curved, but diffeomorphic, transformations. They are thus a much

closer fit to the medical imaging problems that originally motivated this research. This

thesis, and the rest of this discussion, is therefore focused exclusively on direct image

registration methods.

Besides the main distinction in the field of registration between direct and feature

based approaches, direct registration itself can be subdivided into four different types

of approaches: iconic methods, Fourier based methods, non-parametric or optical flow

methods, and – the subject of this thesis – parametric registration methods.

Types of Direct Image Registration

Iconic methods lie in some sense in-between the feature based techniques and the

direct techniques. The term iconic, coined in [49], includes a number of block or

patched based registration methods. These model complex transformations by solv-

ing for a collection of local, simple transformations which are then smoothed together

somehow, often with other constraints being included. These works tend to take the

form of end to end algorithms, intended to function as black-boxes for image regis-

tration. Collins et al. [58] developed the ANIMAL algorithm which models complex

deformations as locally simple transformations of blocks. Shen and Davatzikos de-

veloped the HAMMER algorithm [170]. This method is difficult to classify as it has

many of the characteristics of feature based methods, such as searching for item to

item correspondence, but also does some pixel based computations. The PASCHA

algorithm proposed by Cachier et al. [49] attempts to include elements of all the dif-

ferent image registration methods discussed (feature-based, consistent, competitive

and incremental regularizers). All three of these examples have been developed in the

context of medical imaging. These methods can be related back to the central theme
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of this thesis by noting that they can be viewed as a collection of small local direct

parametric registrations. The work presented here could be applied to these methods

on a component by component basis.

Fourier based methods were developed as a faster way to perform image registra-

tion by performing the search in the Fourier space [4]. A more sophisticated method

using phase correlation was proposed by Kuglin and Hines somewhat later [122].

When applicable, Fourier based methods can lead to rapid, one-step solutions of the

registration problem. However, they require that a simple mathematical relationship

exist between the Fourier transform of the current and transformed image. This is not

generally true for the transforms of interest in this thesis, and so their development

is not pursued further here.

Optical flow is the 2D vector field created by the projection of 3D motion through

a camera, or other imaging device. The concept has its roots in the psychology of

motion perception discussed by Gibson [84]. However, the optical flow vector field

can also be viewed as a transformation that registers two images, and optical flow

techniques have played an important part in the development of image registration.

In 1981, Horn and Schunk [105] presented the first method for determining optical

flow in a computer vision context. Numerous methods followed, which have been

compared in the extensive review [17]. The majority of the optical flow methods

directly generated vector flow fields regularized with some sort of smoothness con-

straint. The key point here is that the transforms are not parameterized. Currently,

the terms nonparametric image registration techniques and optical flow techniques are

frequently used interchangeably (e.g., [97, 199]), although there is no optical flow, as

such, when performing intersubject MRI registration.

Parametric methods are distinguished by using a parameterized functional map-

ping to express the relationship between the coordinate systems of the two images

being registered. This idea was originally proposed by Barrow et al. [18], but their

work is somewhat neglected, and the origin of parametric methods is usually ascribed

to Lucas and Kanade’s 1981 registration paper [136]. As parametric methods are the

main focus of this thesis, they will be reviewed in more detail in the following section.
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2.3 Parametric Image Registration Methods

There were two key elements in Lucas and Kanade’s [136] paper. One was the idea of

using arbitrary parameterized functional transformations, such as rotations, shears,

or homographies, between the spaces of the images. Lucas and Kanade [136] also

used a least squares cost function, and optimized it using an iterative Gauss-Newton

optimization method. This approach was to become one of the canonical approaches

to image registration in the computer vision field, being repeatedly used by many other

authors (e.g., [12, 24, 182]). All of the work presented in this thesis is influenced by

the Lucas-Kanade method. In fact, the efficient inverse compositional method [11, 12],

discussed at length in Chapter 7, was published 20 years after [136] and is entitled

“Lucas-Kanade 20 Years On” to celebrate the great influence this approach has had.

The Lucas-Kanade method [136] can be described quite well in terms of the frame-

work shown in Figure 2.1. The image difference measure used was mean squared

difference, the optimizer was of a Gauss-Newton type, and the transformations used

were matrix transforms, such as rigid and affine transforms. Key elements that re-

mained to be developed were an image difference measure that was robust to sig-

nificant variations in the character of the images, and the use of more sophisticated

transformations, that could model image changes more complex than those caused

by, for example, looking at a planar object from a different camera angle.

2.3.1 Development of the Mutual Information Measure

Early image registration work primarily used correlation [3, 102], mean absolute dif-

ference [15], and mean squared difference [136] measures to quantify the goodness of

a match between images. The observation that correlation based measures could be

improved by normalization [157] lead to the normalized correlation measure that is

still widely used. However, particularly in medical applications, the images to be reg-

istered have such different natures that correlation based measures cannot effectively

measure the quality of the registration. For example, the similarities between PET

(Positron Emission Tomography) and MR (Magnetic Resonance) images cannot be

captured by correlation alone. Various information theoretic criteria were proposed

as cost functions for registration by several authors [57, 99, 180, 205] in the early
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1990s. In 1995, mutual information (MI) was proposed independently by [56, 194].

MI captures in a very general way the idea that there is some relationship between the

structures in each image, and it proved very effective for registering images of vary-

ing characters. Applications of direct image registration using MI quickly became

widespread. By 2003 a survey by Pluim et al. [155] listed over 90 reported studies of

mutual information registration of medical images.

2.3.2 Development of Parameterized Deformable Transformations

Certain kinds of image registration problems, such as the change in appearance of a

planar object when viewed from different angles could be addressed with fairly simple

matrix based or low-order polynomial transformations. However, the complex trans-

formations of highly deformable objects such as the brain motivated many different

techniques to model them. It was recognized early on that the deformable image

registration problem was highly ill-posed, and various deformation models were pro-

posed to regularize it. Widrow [203] proposed to use a “rubber-sheet” transformation,

a clear precursor of elastically regularized transforms, for the registration of chromo-

some images, although he did not propose a truly automatic method to achieve the

registration. Fischler and Elschlager [78] used a model consisting of points connected

by virtual springs to match a canonical face to images of faces and models of terrain

to images of terrain. They proposed a matching algorithm, but the images had to be

broken down descriptively by hand first. It was not until the paper by Burr [45, 46]

that an end-to-end system for deformably registering images was developed, using

an iterative solution method. Bajcsy and Broit [8] were the first to explicitly use

elasticity theory to define a regularizer; they also applied the matching process to 3D

volumes, a difficult task given the limited computer power of the time.

Spline based transforms were also introduced to model deformations of an image

that could not be represented by one of the matrix group transforms. Goshtasby

proposed piecewise linear [87] and cubic [88] mappings. Evans et al. [75] generalized

the thin plate spline [31, 94] originally used for modeling aircraft wings to model

deformations in three dimensions. Szeliski and Couglan [183] developed a series of

multiresolution splines that were also applied to medical image registration [127]. In

1999, Rueckert et al. [164] proposed a multi-resolution deformation model based on
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the tensor product of B-splines defined over a control point grid which has become

very popular in medical imaging (e.g., [124, 133, 142, 163]). Both the thin plate

spline, and the B-spline deformation models are used extensively in Chapter 4.

The emphasis on deformable transformations was greatest in the medical imaging

field. This was because in medical imaging, the mapping between images can usually

be treated as diffeomorphic1. In the computer vision field, complex transformations

were usually caused by shifts in camera position that involved occlusions and and other

non-closed form transformations. This, coupled with the development of very reliable

feature based approaches, e.g., the scale invariant feature transform (SIFT) [134, 135],

lead the emphasis in computer vision toward feature based methods. However, there

has recently been a resurgence of interest in parametric image registration techniques

that can address the special characteristics of images taken by a camera, from two

different viewpoints [21, 113]. Techniques have also been proposed which can process

self-occlusions which may occur when imaging a deformable object with a camera [83].

These advances point to a promising future for direct image registration approaches

in computer vision.

2.4 Efficient Parametric Registration Techniques

At the current time, the direct, parameterized image registration approaches have

evolved into a widely used framework (shown in Figure 2.1) for image registration.

Recall from Chapter 1 that the primary computational cost of this framework is the

evaluation of the image difference measure, D. The optimization component of Fig-

ure 2.1 controls the number of times D will be evaluated, while the remainder of

the framework mainly impact the speed with which D can be evaluated. The issue

of efficiency within this framework has been addressed through specific implemen-

tations of efficient components, through parallel processing, through multiresolution

approaches, through the selection and use of subsets of pixels, and through the inverse

compositional and related methods.

1A mapping is diffeomorphic if it is differentiable and has a well defined inverse [201].
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2.4.1 Efficient Components

The modularity of the direct parameterized registration framework has encouraged

the development of computationally efficient approaches for each of its components.

Several efficient components have been based on the B-spline framework for signal

processing proposed by Unser et al. [189]. In [189] they proposed to use B-spline basis

functions for nearly all levels of efficient signal processing systems. This proposal

was in fact successfully achieved. The B-spline freeform deformations proposed by

Rueckert et al. [164] are explicitly designed for efficiency, presumably to address some

of the significant computational inefficiencies in landmark based spline models. In

this work, the deformation is modeled using B-spline kernels defined on a grid of

control points. Because the kernels are compactly supported and separable, their

implementation is computationally efficient. Thévenaz and Unser [185] proposed a

efficient means of calculating mutual information using a B-spline Parzen windowed

joint histogram. This method is combined with the B-spline freeform deformations of

Rueckert et al. [164] and B-spline interpolation [189] in the multimodal deformable

registration by Mattes et al. [142]. In this thesis, the B-spline deformation model [164]

and Thévenaz and Unser’s mutual information [185] are among the techniques used.

Optimizers for image registration can be approached using either a local, or global

type optimizer. Local optimizers are more commonly used [91, 181, 208], but can

suffer from being trapped in local minima if they are not initialized close enough to

the final solution. Global optimizers will always converge to the global minimum of

the image difference measure, but they can be orders of magnitude slower than a

local approach. The efficiency of global optimization methods has been addressed

by Chen et al. [51] who proposed a tunneling search method for efficient global opti-

mization, and Wachowiak and Peters [197], who used parallelization of direct search

approaches to make global optimization more efficient. However, in this thesis, local

optimization approaches have been used exclusively, which corresponds to the assump-

tion that a plausible starting estimate is available. The efficiency of local optimizers

in a registration context has mainly been addressed through empirical studies such as

those by Bernon et al. [25, 26], Maes et al. [137] and Klein et al. [120]. These studies

have focused on particular registration problems and it is not always clear how to

generalize their results. Chapter 4 of this thesis addresses this issue by developing
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principles for optimizer selection which are then verified through experiment. The

Efficient Second order Method (ESM) [22, 139, 140], which is discussed at greater

length in Chapter 7, is an example of a specific local method that exploits special

structure within the image registration problem to create a better approximation to

the Hessian matrix of second derivatives at each step. This better approximation

allows more efficient and reliable optimization.

The efficiency of the interpolation method has also been addressed. As mentioned,

Unser et al. [189] have proposed B-spline based methods for accurate and efficient

image interpolation, including the representation of an image entirely as a B-spline

scale space. Čapek and Poušek [191] discuss using integer rather than floating point

operations for faster volume resampling. Finally, although the work of Salvado and

Wilson [167] is focused on removing interpolation artifacts rather than speed, they

also do address the efficiency of interpolation methods.

2.4.2 Parallel Implementations

Several authors have addressed the efficiency of image registration by proposing paral-

lel implementations. Wachowiak and Peters [196, 197] used parallelized direct search

methods for rigid 3D volume registration. Rohlfing and Maurer [162] developed a

shared memory parallel implementation of a B-spline deformable registration frame-

work. Through the use of a large number of processors (64 to 128) they were able

to achieve significant speedups. Several authors have also implemented both para-

metric and nonparametric image registration algorithms on graphics processing units

(GPU)s (e.g., [121, 166]).

These methods achieve efficiency by spreading the calculation across multiple pro-

cessors. It could in some way be considered that rather than being more efficient,

these methods are bringing more resources to bear on the same problem. In this the-

sis, parallelization has not been considered, but the approaches discussed here could

easily be generalized to a parallel environment.

2.4.3 Multiresolution Approaches

Coarse to fine, or multiresolution, approaches were being applied to deal with the

problems of speed and local minima in the search as early as 1973 [147]. During the
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1980s, numerous authors [9, 67, 74] were applying multiresolution approaches to the

registration problem in more or less ad-hoc ways for both computational efficiency and

to avoid local minima (see also early work in stereo [147]). Bergen et al. [24] formalized

this approach and applied it to parametric registration to produce a framework for

multiresolution image registration that is now considered a standard method. In this

approach, the images to be registered are reduced in size in a (usually Gaussian) scale

space pyramid. Optimization is started on the top level of the pyramid. As each

optimization stage completes, the results from that stage are used to initialize the

next, higher resolution stage. The approach used in this thesis (see Section 3.1.12) is

closely related to that discussed in [24].

2.4.4 Pixel Selection

As the method of [3] was relatively slow, several methods for speeding up direct image

registration and/or template matching were soon proposed. Barnea and Silverman

proposed the Sequential Similarity Detection Algorithms (SSDA) in [15] and Nagel

and Rosenfeld [148] proposed a method for selecting optimal pixels in template match-

ing applications. These methods are the very early precursors of the work presented

in Chapters 5 and 6. The idea of using only some of the pixels in the image became

fairly widespread, but formal analysis of exactly how many or which ones was not

immediately addressed.

In the field of computer vision, tracking is the process of following an object

through a time series of images. Template based tracking [29, 90] addresses this

problem by starting with a template image of the object to be followed, and then

registering this template to subsequent frames in the image series. As tracking an ob-

ject is obviously a time sensitive matter, template based tracking became a driver for

a considerable amount of work in efficient image registration. Dellaert and Collins [66]

proposed to speed up registration for the tracking problem by using only a small set

of pixels that best reduce the uncertainty in the resolved transformation parameters.

A recent, alternative approach was proposed by Benhimane [23] who determine which

pixels best fit a low order Taylor series approximation to the image. It is implied that

these pixels will then be optimal for reducing the uncertainty in the transformation

parameters, as they best agree with the optimization model used. In Chapter 6 the
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framework of Dellaert and Collins [66] is examined, and it is shown that the issue of

scale has been ignored in the role of the derivative used for pixel selection. Unless

taken into account, this omission can lead to performance degradation.

Tracking was also one of the main motivations for the development of the last cate-

gory of efficient approaches, the inverse compositional algorithm and related methods.

2.4.5 Inverse Compositional Methods

The image registration problem has two special characteristics which can be exploited

to gain efficiencies. There is a symmetry between the roles of the fixed and the moving

images, and the transformations parameters could be optimized compositionally in-

stead of additively. Hager and Belhumeur [90] first exploited the symmetry between

the fixed and moving images to develop a fast template based tracking approach.

Shum and Szeliski [172] exploited the compositional aspect to increase efficiency in a

panoramic mosaicking application. Baker and Matthews [11, 12] identified and clas-

sified all the ways that these special characteristics could be used and proposed the

inverse compositional registration algorithm. This algorithm achieves efficiency by

estimating an update step for the warp of the fixed image, and composing the inverse

of that step with the current moving image warp.

The previously mentioned ESM algorithm [22, 139, 140] was developed indepen-

dently for tracking and visual servoing. It is shown in this thesis that it is closely

related to the inverse compositional algorithm. Where a classical approach computes

an update step for the moving image warp parameters, and the inverse compositional

approach computes one for the fixed image warp parameters, the ESM approach com-

putes both and combines them. In this way it is closely related to the work of Keller

and Averbuch [114], although the ESM method addresses certain mathematical issues

that Keller and Averbuch ignored.

Current implementations of both the IC and ESM algorithms suffer from certain

restrictions. For one, the optimizer step must be made compositionally in the trans-

formation space. As most common optimization algorithms are defined with additive

update steps, this complicates the implementation of these methods. Furthermore,

the ESM method is also restricted to operate on transformations parameterized using

the exponential map of their Lie group, which may not always be practical or avail-
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able. Chapter 7 shows how the ESM and IC algorithms are related, and how they

may be generalized to remove these restrictions while maintaining their advantages.

2.5 Summary

Registration is a problem with a wide variety of applications and the development of

current techniques spans several decades. Current approaches to image registration

can first be classified into direct and feature based methods, and the direct meth-

ods can be further subdivided into Fourier-based, non-parametric and parametric

approaches. It is the direct, parametric image registration approaches that are of

interest in this thesis. These approaches can be viewed as being made from four

interconnected components (Figure 2.1): An optimization algorithm, an image dif-

ference measure, a transformation and an interpolation technique. The basic form of

this model took shape in the papers of Barrow et al. [18], and especially Lucas and

Kanade [136].

Since that time each of the components has increased in sophistication. Particu-

larly important developments related to the implementation framework described in

this thesis are the development of multiresolution approaches [24], the use of mutual

information as a cost function [56, 194], the use of the thin plate spline [31, 75, 94]

and the B-spline parametric deformation models [142, 164].

This research is focused on improving the efficiency of image registration. Of

particular relevance to the work presented here are the studies of optimization effi-

ciency [25, 26, 120, 137], methods that propose to use only some of the pixels [15,

23, 66, 148], and the inverse compositional methods [11, 12, 22, 90, 139, 140, 172].

Each of these will be discussed in greater depth and related to the current work in the

corresponding chapters. In each case general, deeper principles unifying the methods

in question is sought, and its effectiveness is then verified by experiment. Therefore,

before the original contributions of this thesis can be described, it is necessary to

discuss the experimental framework in which the research was conducted. The fol-

lowing chapter provides technical discussion of the image registration approach which

is common to all the subsequent chapters.
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Chapter 3

Experimental Framework

This thesis proposes a number of specific methods for improving the performance of

image registration algorithms. To test these propositions, experiments were performed

which consist of running sets of image registrations using the old and the proposed

algorithms. As shown in Figure 2.1 the direct, parametric image registration process

can be viewed as having four components: the image difference measure, the transfor-

mation, the interpolation method, and the optimization algorithm. The work in this

thesis has focused on aspects of the difference measure and the optimization, while

using standard approaches for the other aspects. For the most part, the experiments

in Chapters 4–7 were conducted using a common implementation, evaluation criteria,

and statistical testing framework. To avoid repetition, these common elements will

be described together in this chapter.

In the first section, the technical aspects of each of the components used in the

experiments is described. Once the experiments were performed it was necessary

to evaluate them. In each case, the registration results are compared in terms of

speed, accuracy and reliability. Section 3.2.1 describes how the output of the different

registration runs was compared and the statistical tests that were used to verify

whether the observed results could legitimately be used to draw conclusions.
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3.1 Image Registration Framework

All the work presented in this thesis has been implemented by using and extending the

Insight Toolkit [109]. This toolkit was developed to support medical imaging research

and supplies well-tested implementations of registration algorithms. In research of

this sort, there is always the risk of researcher bias, in that more time is usually

spent crafting the newer algorithm being proposed than is spent on the old baseline

algorithm being compared to. Inadvertent bugs in the baseline algorithm can lead to

artificially good results. Using this toolkit has the advantage that the baseline imple-

mentation is well-tested, and implemented independently from this research, which

should minimize this problem. Most importantly, it also enhances reproducibility

of the results, as the same framework is available to other researchers. The follow-

ing sections describe each of the components of the registration system in turn: the

image difference measures, the interpolation method, the transformations, and the

optimization algorithms.

3.1.1 Image Difference Measures

Three of the most widely used image difference measures were used for the experi-

ments in this thesis. The normalized correlation (NCC) measure [3, 102] was the first

measure used for image registration. It is invariant to linear changes in intensity be-

tween the two images under test. The mean squared difference (MSD) measure [136]

expresses the image registration problem as a least squares problem. Using this mea-

sure implies that the two image intensities are expected to be identical when they

are correctly registered. It is particularly appropriate when the images come from

the same instrument, under similar conditions. The mutual information (MI) mea-

sure [56, 194] is the most recent and general of the three. It measures the existence

of some relationship, however complex, between the intensities of each image.

Roche et al. [161] have presented an elegant interpretation of all three of these

measures in terms of the joint histogram of the intensities of the two images. Mean

squared difference corresponds to the expectation that the joint histogram should

contain a line of slope exactly one at correct registration. Using the normalized

correlation difference measure corresponds to the expectation that the joint histogram
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should contain a line, but the slope and intercept may be arbitrary. Finally, mutual

information merely expects that the entropy of the joint histogram should be lowest at

correct registration. That is, that as much as possible of the variation in the intensities

in one image can be predicted by the variations in the other at corresponding points.

When images are in correct alignment, it is expected that the squared difference

should be low, and the correlation and mutual information should be high. For con-

sistency, all measures will be defined so that low numbers indicate a good match, and

therefore all optimization problems will be minimization problems. Thus the negative

normalized correlation, and the negative mutual information are the measures that

are really used. For brevity, however, the word negative may be omitted in much of

the discussion. All the equations and definitions, will be constructed so that lower

numbers indicate better registration.

In order to perform optimization, we must be able to compute each measure, its

derivative, and occasionally its Hessian. In this section we discuss the computation

of each measure and its derivative, as these are common to all experiments in this

thesis. The calculation of approximate Hessians was specifically examined as part of

this thesis, so that discussion will be deferred to Chapter 4.

In general, the image difference measure may be viewed as a function of the warped

moving image,

D(φ) = D(Im(W (X,φ)))

Its derivative with respect to the transformation parameters then takes the form

∂D

∂φ
=
∑
i

∂D

∂Imi

∂Imi

∂W

∂W

∂φ

where the summation over i runs over all the pixel positions of the fixed image. Here
∂D
∂Imi

is the derivative of the image measure with respect to each pixel, i, which is

specific to each measure. The
∂Imi

∂W
is the derivative of the moving image at the

warped position of the point, Xi, and ∂W
∂φ

is the Jacobian matrix of the warp at Xi.
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3.1.2 Mean Squared Difference

The mean squared difference measure, DMSD, is simply an average of the squared

differences in intensity between corresponding pixels.

DMSD(φ) =
1

N

N∑
i=1

(If (Xi)− Im(W (Xi,φ))2 (3.1)

where N is the number of pixels in the image. The gradient of this measure is easy

to compute:

∇φDMSD(φ) =
2

N

N∑
i=1

[(If (Xi)− Im(W (Xi,φ)))

·∇W Im(W (Xi,φ))∇φW (Xi,φ)] (3.2)

3.1.3 Normalized Correlation

Normalized correlation is appropriate for comparing images where there is a linear

relationship between the intensities in the fixed and moving images, such as pho-

tographs under different lighting conditions or satellite images in different spectral

bands. Note that to remain consistent with our discussion of minimization, we de-

fine our cost function, DNCC , as the negative of normalized correlation. The DNCC

measure is a ratio of two terms

DNCC =
−u
v

(3.3)

where

u =
∑
i

[
(Ifi
− Īf )(Imi

− Īm)
]
,

and

v =

[∑
i

[
(Ifi
− Īf )2

]∑
j

[
(Imj

− Īm)2
]] 1

2

.
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where Īf and Īm are the mean intensities for the fixed and moving images, respectively.

The gradient is then

∂DNCC

∂φ
=

1

v2

(
u
∂v

∂Im
− v ∂u

∂Im

)
∂Im
∂φ

Assuming that the mean values of the image, Īm, do not appreciably change as the

parameters change, the derivatives of u and v with respect to a particular pixel in the

moving image, Imi
, are:

∂u

∂Imi

= (Ifi
− Īf ),

and,
∂v

∂Imi

=
1

v

∑
k

[
(Ifk
− Īf )2

]
(Imi

− Īm),

so the complete gradient of the DNCC measure is:

∇φmDNCC =
−1

v
·
∑
i

[
(Ifi
− Īf ) · ∇φmImi

]
+
u

v3
·
∑
k

[
(Ifk
− Īf )2

]
·
∑
j

[
(Imj

− Īm) · ∇φmImj

] (3.4)

3.1.4 Mutual Information

The mutual information (MI) image similarity measure [56, 194] is useful for images of

different modalities. The implementation used in this thesis is based on the efficient

mutual information implementation proposed by Thévenaz and Unser [185], which

relies on a B-spline Parzen windowed representation of the joint probability distribu-

tion of the intensity levels in the two images. To understand the implementation, it is

helpful to first consider how the joint distribution could be directly computed, without

Parzen windowing. Specifically, let bfk
, where k = 1 . . . K, be a set of K bins of width

df for the intensity values in the fixed image starting at bf0 = min
x
If (x). Similarly,

let bml
be the bins for the intensity values in the moving image, where l = 1 . . . L, the

bins begin at bm0 = min
x
Im(x) and have width dm. Then the joint distribution, P ,

is an array of size K × L. The entry Pkl is equal to the number of pixels in If for

which the intensity falls in bin k and the intensity of the corresponding pixels in the
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transformed image falls in bin l, normalized by the total number of pixels, N :

Pkl(φ) =
N∑
i=1

δ

(
k,

⌈
If (Xi)− bf0

df

⌉)
δ

(
l,

⌈
Im(W (Xi,φ))− bm0

dm

⌉)
.

Here δ is an indicator function, equal to 1 if its two arguments are equal, and zero

otherwise. Thévenaz and Unser [185] use instead a soft version to compute the entries

in the table, based on B-spline Parzen windows, so that the joint distribution becomes:

Pkl(φ) =
N∑
i=1

1

N
β0

(
k − If (Xi)− bf0

df

)
β3

(
l − Im(W (Xi,φ))− bm0

dm

)
(3.5)

where β0 and β3 are 0th and 3rd order B-spline Parzen windows respectively. The joint

distribution can simply be normalized by dividing by the number of pixels because

the B-spline Parzen windows satisfy the partition of unity constraint. That is, their

contributions to the table for each pixel will always sum to one, regardless of the pixel

value (see [185, p. 2085] for details). The mutual information can then be computed

using the usual formula [61]:

DMI(φ) =
K∑
k=1

L∑
l=1

Pkl(φ) log
Pkl(φ)

(
∑

k′ Pk′l(φ)) (
∑

l′ Pkl′(φ))
(3.6)

Note that the second factor in the denominator above is just the intensity histogram

of the fixed image, which is computed only once, before the optimization process.

Because a 3rd order B-spline is differentiable, the gradient of the joint histogram,

∇φPkl(φ), can be computed and stored in ](φ) tables, each of dimension K × L.

Specifically, the elements of these tables are given by

∇φPkl(φ) =
N∑
i=1

1

dmN

∂β3

(
l − Im(W (Xi,φ))−bm0

dm

)
∂Imi

· ∂Imi

∂φ
. (3.7)

(The specifics of B-splines, β0(x), β1(x), ..., and their derivatives ∂β0(x)
∂x

, ∂β1(x)
∂x

, ... can

be found in [189].) In [185] it is shown that when using the above formulation the
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derivative of DMI is:

∇φDMI(φ) =
K∑
k

L∑
l

∇φPkl(φ) log
Pkl(φ)∑K
k′ Pk′l(φ)

(3.8)

In a practical implementation, calculation of the MI measure and its gradient

proceeds by first accumulating the joint distribution, P , and its derivatives, ∇φP ,

in a loop over all the pixels. Once accumulated, these can be normalized, and then

converted into the actual MI and its gradient using Equations 3.6 and 3.8.

3.1.5 Interpolation

The interpolator is a critical part of the image registration process. Except in very

unusual circumstances, the points in the fixed image are not mapped directly onto

lattice points in the moving image by the transform. To come up with values for

positions off the sampling lattice, interpolation must be used. All interpolation meth-

ods face a tradeoff between computation time, and accuracy. All experiments in this

thesis have used linear interpolation exclusively in the registration process. This was

chosen for performance reasons, as it is much faster to compute than the alternatives.

It has been pointed out by several authors [153, 167], however, that linear interpo-

lation can lead to artifacts in the cost function that can interfere with the registration

process. Upon investigation, it was found that these artifacts occur primarily when

the transformation consists of a translational shift, which causes the sampling points

to consistently go in and out of alignment with respect to one another. For transforms

that are not exclusively translational, these artifacts are quite minor. Figure 3.1 shows

an example. The mean squared difference cost function has been plotted between an

image and a transformed version of itself. (The image used is shown in Figure 4.1.)

Only in the case of a pure translational shift do the interpolation artifacts appear.
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Position

M
S

D

Translation only
Translation and Rotation

Figure 3.1 Mean squared difference cost function of an image compared
to a transformed version of itself using linear interpolation. The plain line
shows the case where the moving image is transformed using translation
only, while the dotted line shows the case of a transformation involving
both angular and translational components. Interpolation artifacts are
clearly visible in the translational case, but when there is some angular
shift involved these disappear. The translation ranges from ±16 pixels in
both x and y directions. For the dotted line, the angle also varies over
±0.28 radians.

Interpolation also affects the calculation of the image gradient. Computing the

gradient of the cost function requires the image gradient to be computed at a point

in the moving image which does not in general fall on the sampling lattice. There

are two approaches. One is to compute the gradient from the image every time

it is needed, the other is to compute the gradient of the moving image once, and

interpolate it when it is needed. The latter approach has been chosen, using a nearest

neighbor interpolation. This is the default method used in the ITK (Insight Tool Kit)

library [109]. It is much more efficient than recomputing the gradient at every step,

and our experience shows that it is equally effective.

3.1.6 Transformations

The transformation, or warp, defines the mapping from the coordinate system of the

fixed image to the coordinate system of the moving image. The majority of the work



36 Experimental Framework

presented here (Chapters 5, 6, and 7) is implemented on matrix-based transformations.

The work on optimizer selection and scaling (Chapter 4) is extended to both matrix

based and spline based transformations. The matrix based transforms correspond

roughly to what are sometimes called the linear transforms, while the spline based

transforms may also be described as curved or deformable transforms.

Transformations are defined as families of functions mapping from the space of one

image into the space of another, W (x,φ), where the family of functions is parameter-

ized by φ. Being functions, they conceptually support the operations of composition,

and inversion. The composition operation

W (x,φC) = W (W (x,φA),φB)

will be represented with a ◦. For brevity, a slight abuse of notation will be used to

write:

φC = φB ◦ φA

to represent the composition of two transforms, i.e.,

W (x,φC) = W (W (x,φA),φB)

Note that, in general, composition is not commutative, i.e., φB ◦φA 6= φA ◦φB. In a

similar manner to composition, φ−1 will be used to refer to the inverse of a transform,

i.e.,

x = W (W (x,φA),φ−1
A )

3.1.7 Matrix Transformations

There are a number of widely used transformations that can be represented as the

action of a matrix group [10] on the space of homogeneous coordinates. That is[
x̂

λ

]
= M ·

[
x

1

]
(3.9)
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Transformation Description

Rotation
Rotates the coordinates. A is a rotation matrix, T ,E =
0

Translation
Applies a shift in each coordinate. A = I, T may be a
non-zero vector, E = 0

Rigid (Euclidean)
Rotates and translates the coordinates. The set of rigid
transformations includes all translations and rotations.

Uniform Scaling Scales the coordinates. A = γI and T ,E = 0

Similarity (7-Parameter)

Rotates, translates and scales the coordinates uni-
formly. Preserves angles. In 3D, 7 parameters are re-
quired. The set of similarity transformations includes
all the rigid transformations, and all the uniform scal-
ings.

Scaling
Scales the coordinates differently along each axis. A is
a diagonal matrix

Rigid+Scaling (9 param-
eter)

Rotates, translates and scales the coordinates with pos-
sibly a different scaling in each direction. The term “9
parameter” only makes sense in 3D, where 9 parameters
are required. The set of rigid+scaling transformations
includes all the similarity transformations, and all scal-
ings.

Affine
Preserves parallel lines. E must be zero. The affine
transformation includes all the rigid+scaling transfor-
mations.

Projective or Homog-
raphy

Preserves collinearity, intersection and cross-ratio. The
set of projective transformations includes all the affine
transformations.

Table 3.1 The matrix based transforms form a hierarchy of transforma-
tion groups. Transformations shown in bold are used in the experiments
in this thesis.



38 Experimental Framework

where M is a member of one of the matrix groups. M can be further broken down

into

M =

[
A T

E γ

]
(3.10)

Here, if dim is the dimension of the image coordinate system, then A is a dim× dim
matrix which contains the affine components of the translation, T is a dim× 1 vector

containing the translational components, and E is a 1 × dim vector holding the

elation components. The γ component is a scalar, which for affine and Euclidean

transformations is equal to one [96]. The right hand side of 3.9 is the homogeneous

coordinate of x. Homogeneous coordinates [30, 96] are elements of the projective

space Pd+1, that is, they map to coordinates in the affine space Rd by dividing by the

last element, λ, above.

The matrix transforms may be composed by matrix multiplication, and inverted

by matrix inversion. These operations always give rise to another transformation of

the same type, meaning that these types of transformations form Lie groups [10].

In fact, there is a hierarchy of matrix based transformations, each of which is a Lie

group [10, 96]. These are summarized in Table 3.1. Note that all these transforma-

tions are linear in the homogeneous coordinates, but the homography is not linear

in the coordinates themselves. The homography should not be viewed as a curved

transformation, however, as it preserves straight lines.

The transforms may be parameterized in various ways. In this thesis, we use the

Euler angle parameterization of rigid transforms. In the two dimensional case, this

is simply parameterizing a rigid transformation by an angle and two translations. In

the three dimensional case, this parameterizes the 3D rotation as successive rotations

about the coordinate axes. Order matters, since matrix multiplication does not com-

mute. The order used is to first rotate around the Y axis, then around the X axis and

finally around the Z axis as that is the default within ITK.

Euler angles are not an ideal parameterization of 3D rotations. As rotations ap-

proach right angles, the mapping can become singular. However, Euler angles have

the advantage of forming a vector space, meaning that they can be optimized us-

ing additive update steps. The most common alternative parameterization, using

quaternions, requires specialized updating steps because quaternions cannot be simply
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added [93]. The registrations which were performed as part of this research involved

angular changes of less than 90 degrees, and Euler angles performed entirely satisfac-

torily. The remaining matrix based transforms are parameterized using their matrix

elements directly. Details of the parameterizations can be found in Appendix F.

Matrix based transforms are frequently centered. That is, they are considered

to act about a center of rotation. In practice, this is implemented by pre and post

multiplying by a translation to the center,

x̂ = T ·M · T−1x, (3.11)

where T is a translation that moves the origin to the center point. Because the

translation, T , is also a matrix group transformation, this could be represented as

a single matrix transformation (although with different parameters) centered on the

origin. The advantage of centering the transformation is that it frequently makes the

derivatives with respect to the parameters well behaved, leading to better optimization

performance [109]. For the work presented in this thesis, unless otherwise stated, all

transformations were centered on the center of the image.

3.1.8 Thin Plate Splines

A deformation field can also be represented by the change in position of a set of

landmark points. The deformation on each point is then well defined, and the problem

is to interpolate the deformation between the points. One widely used method is the

thin plate spline (TPS). As the name suggests, it was originally developed for modeling

the deformation of thin plates of metal [94]. It was proposed for the modeling of

biological shape by Bookstein [31], and extended to 3D by Evans et al. [75]. The

TPS is one of a more general class of transformations called kernel splines because

they interpolate deformations based on a radial basis function kernel centered at each

landmark [63, 177].

The kernel splines have the advantage of being easy to define, however they also

have some disadvantages. The final positions of all points depend on the positions of

all the landmarks, which means that in an image registration context all pixels affect

and are affected by all parameters. As the number of landmark points and therefore
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the number of parameters rises their computational cost increases significantly (see

also Section 4.6.1). The kernel splines do not have closed form methods for compo-

sition or inversion. Indeed it is possible to generate non-diffeomorphic warps with

them, that is, warps for which an inverse does not exist, or which are not invertible.

The implementation of thin plate splines in ITK had to be modified to be suit-

able for use in the registration framework. These modifications, and details of the

formulation can be found in Appendix B.

3.1.9 B-spline Transformations

Rueckert [164] proposed to model deformations using a grid of control points over the

image extent, with interpolation between the points using a tensor product of cubic

B-splines. That is, the deformation along a particular coordinate dimension, i, at a

point is given by [142, 164] (for the 3D case):

Di


xy
z


 =

∑
j

β3

(
x− xj
∆px

)
β3

(
y − yj
∆py

)
β3

(
z − zj
∆pz

)
φji (3.12)

where the j iterates over the neighborhood of the point,
[
xj yj zj

]
are the coordi-

nates of each control point, ∆p is the control point spacing, and β3 is a third order

B-spline. The deformation is parameterized by a shift for each control point and each

dimension, the φji above. The definition of B-splines and their derivatives may be

found in [189].

The cubic B-spline is only non-zero over neighbors two distant from the current

point in each coordinate which means that the support is local – that is not all

parameters affect all points which means they can be implemented efficiently. Also,

the interpolation is truly separable, so the interpolation of the deformation in x is not

affected by the interpolation of the deformation in y, and so on. However, because

the set of points used to model the deformation must be defined on a regularly spaced

grid, in certain cases many more points are required to use a B-spline model than are

necessary for a kernel spline model. This occurs for two reasons. If the deformation

is concentrated in a small area, many of the control points are effectively wasted
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(modeling nothing). In addition, since the deformation must be computed using

neighboring control points on each side of the point of interest, it is necessary to pad

the control point grid outside the area of interest. For example a “5 × 5” B-spline,

having 25 control points covering a 2D image, would also have to have a padding of 3

points on the edge (see Figure 3.2). These extra points add significantly to the number

of parameters. This also means that outside the region of support, the transformation

is undefined. This can easily lead to a “rip” – a non-differentiable portion of the warp

– around the edges. Also, like the kernel splines, there are no closed form exact inverse

or composition methods, and it is possible to define uninvertible warps.

IMAGE
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¤ ¤ ¤ ¤ ¤ ¤¤
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¤ ¤ ¤ ¤ ¤ ¤¤
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Figure 3.2 Example of a B-spline grid. This example has 4× 5 control
points over the region of the image, but these must be padded with 3
extra rows and columns outside the region of interest. The transformation
shown here is only well defined up to the edge of the image.

3.1.10 Optimization

The optimization algorithm forms a key component of the image registration process.

Since the work of Lucas and Kanade [136], the majority of direct image registration

algorithms have used algorithms suitable for unconstrained minimization of convex

cost functions [41, 181, 208]. Of course, the necessary assumptions to use these

algorithms generally do not hold perfectly. Firstly, the problem is rarely entirely

unconstrained. However, in practice the constraints are usually so broad that they

can be ignored. A more serious issue is that the image difference measure is rarely

convex. A convex function, f(x), defined over a convex set X must satisfy [104],

f(ax+ (1− a)y) ≤ af(x) + (1− a)f(y); ∀x,y ∈X; 0 ≤ a ≤ 1



42 Experimental Framework

which means that a straight line drawn between any two points on the function will

be greater than or equal to the function. A somewhat weaker constraint is that the

function may not have local minima. A function with a single global minimum is

quasiconvex. More formally a function, f(x), is quasiconvex on a convex domain X

if [104]

f(ax+ (1− a)y) ≤ max(f(x), f(y)); ∀x,y ∈X; 0 ≤ a ≤ 1

which implies that its sublevel sets are convex.

For most image registration problems, the function can be assumed to be quasicon-

vex provided the optimization is started near enough to the true minimum. For the

practical problems motivating this thesis, this is feasible. When a patient is scanned

using an MRI or CT scanner they are oriented in a roughly consistent manner in the

scanning device. Image registration is needed for a refinement of an already plau-

sible transformation, rather than for starting the process from scratch. However, if

the optimization process is started outside the range over which the function can be

considered to be quasiconvex, it may converge to an erroneous local minimum. The

distance from the true minimum that the optimization algorithm can be started and

still be expected to converge is referred to as the capture radius. The capture radius

tends to be more a property of the cost function, than the optimization algorithm.

3.1.11 Unconstrained Convex Optimization Methods

Algorithms for unconstrained optimization of quasiconvex functions can be divided

into two classes [80, 85, 131]. The so-called direct search methods are distinguished

by neither explicitly nor implicitly using a model of the function being optimized

and work by performing only greater than/less than comparison of function val-

ues [131]. One direct search algorithm, the Nelder-Mead downhill simplex [149], will

be used in this thesis. (This algorithm is also called the Amoeba algorithm.) This

is the direct search method most commonly used in medical image registration (see,

e.g., [138, 155]). The downhill simplex algorithm searches an N -dimensional space by

maintaining a cluster of N + 1 points (a simplex) in that space. At each iteration,

the worst point (in terms of the objective function value) is replaced by trying one of
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several alterations of the simplex. If none of the alterations are effective, the simplex

is shrunk by moving all the points toward the current best point. The algorithm stops

when the simplex reaches a minimum size. A detailed description of the algorithm

can be found in [144], and the implementation used in this work is available in open

source form as part of the ITK toolkit [118].

The remaining optimization approaches could be called model-based algorithms as

they all form some sort of implicit or explicit model of the function at each iteration.

Based on that model, a new step in the parameter space is computed. There are two

ways of computing this step in common use. Line search approaches first choose a

search direction, and then search for a minimum along that direction [192]. Trust-

region approaches define a radius, R, around the current iterate where the model of

the function is believed to be accurate [59]. They then solve the following constrained

minimization problem:

∆φ = argmin
∆φ

f(φ+ ∆φ) | ||∆φ|| ≤ R

where f(φ+ ∆φ) is the current model of the function. This problem is referred to as

the trust-region subproblem. If the new function value meets some sufficient decrease

conditions, the step is accepted, otherwise the trust-region boundary is shrunk.

In this thesis, five model based optimization algorithms are used, which will now

be described in detail.

Powell’s method [156] requires only function values in order to create its model. It

performs a line search along each parameter direction in turn. This is followed by a

line search along the direction from the starting point to the best point found so far.

It can be shown that this constructs an implicit quadratic model of the function [131].

A detailed description of the algorithm can be found in [192], and the implementation

used in this work is available in open source form as part of the ITK toolkit [116].

Gradient descent is used to refer to a wide range of methods which take steps in

the direction of the gradient. They differ mainly in how the step size is chosen. Two

gradient descent methods are used in this thesis. The first is the regular step gradient

descent optimizer provided in the ITK library. This optimizer, and modifications of it

are used in Chapters 5 and 6. The implementation of this algorithm is freely available
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[117], but a written description is not. Therefore a written description is provided

here, as Algorithm 1.

Algorithm 1 Regular Step Gradient Descent Optimizer [109]

1: Set start position φ0; iteration counter n = 0; scaling matrix S; step size s
2: Repeat
3: Compute the gradient at the current position ∇D(φ(n))
4: Compute the scaled gradient, ∇D∗ = S ×∇D(φ(n))
5: If the scaled gradient has changed direction by more than 90° then
6: Set s = s

2
// Reduce the step size

7: End if
8: Compute the update to the parameters, ∆φ(n)=

∇D∗
||∇D∗|| · s

9: Set φ(n+1) = φ(n) + ∆φ(n) and n = n+ 1
10: Until the convergence criteria are reached

The second gradient descent method is a trust-region gradient descent algorithm

implemented as part of this thesis. This method is based on the theory in [59], and is

a reasonably straightforward application of trust-region methods to gradient descent.

Details are provided in Algorithm 2.

The fundamental difference between the two implementations is that by using a

formal trust-region framework, the proofs of convergence for trust-region algorithms

can be expected to hold. The practical effect is that this algorithm is more robust

and reliable than Algorithm 1. For low dimensional parameter spaces, the effect is

minor, but for the higher dimensional spaces dealt with in Chapter 4 the effect could

be significant. Algorithm 2 was developed mainly to carry out the work in Chapter 4,

and has also been used in Chapter 7.

The reason both gradient descent methods are used in the thesis is chronological

rather than technical. The second method had not been implemented when the work

in Chapters 5 and 6 was completed. It was not considered worthwhile to reimplement

that work on the newer algorithm. The experiments in those chapters are not par-

ticularly sensitive to the differences between the algorithms, and it was anticipated

there would be no change in the conclusions.

Second order methods for optimization are those that use second derivatives of

the cost function as part of their internal model. These methods apply Newton’s

method for finding zeros of a function [150] to finding zeros of the gradient. For
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Algorithm 2 Trust-Region Gradient Descent optimization.

Set start position φ0; iteration counter n = 0; trust-region radius R; scaling matrix
M
Compute ∇φD(φ(0)) and D(φ(0))
Repeat

Compute φ(n+1) at intersection of negative scaled gradient and trust-region
boundary.
Compute Expected improvement E(i) = (φ(n+1)−φ(n)) · ∇φD(φ(n))−D(φ(n))
Compute ∇φD(φ(n+1)) and D(φ(n+1))

Compute ρ, the ratio of real to expected improvement. ρ =
(D(φ(n+1))−D(φ(n)))

E(n)

If ρ < c0 then
// This is an unexpectedly poor result, so the model is wrong. Reject the step
and shrink the trust region.
R = γ0R

Else if ρ < c1 then
// The improvement is acceptable relative to the model, so accept the step
n = n+ 1

Else
// This improvement is good or excellent relative to the model. Accept the
step, and expand the trust region
n = n+ 1;R = γ1R

End if
Until convergence criteria reached

The constants c0, c1, γ0 and γ1 are 0.001, 0.1, 0.1 and 2 respectively. These values were
chosen based on the recommendations in [59].
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strictly quasiconvex functions, a zero of the gradient will occur at the global minimum.

Frequently called Newton methods, these methods are more properly called Newton-

Raphson methods as the basic update step, still used today, was first expressed by

Raphson [28, 159, 206]:

∆φ = − [HφD(φ)]−1∇φD(φ) (3.13)

where HφD(φ) is the Hessian matrix of second derivatives of the cost function, D(φ).

The Newton-Raphson iteration will find the solution of a quadratic minimization

problem in one step, and if started near enough to the minimum these methods are

known to converge to a solution extremely rapidly [59, 151]. There are two specific

second order methods that are relevant to the discussion in this thesis, the Levenberg-

Marquardt method, and the Gauss-Newton method.

The update step is very effective when the function is convex, as the Hessian matrix

will be positive definite. However, difficulties arise when the Hessian matrix, HφD(φ),

is indefinite, which may easily arise on quasiconvex functions. Levenberg [130] and

Marquardt [141] proposed instead to solve

∆φ = − [HφD(φ) + λI]−1∇φD(φ) (3.14)

where λ is chosen to make the Hessian well behaved. Levenberg and Marquardt devel-

oped their work for the least-squares case, and certain authors [158, 186] have believed

that their work only applies in that case. However, Equation 3.14 is general and can

be applied to any cost function. The Levenberg-Marquardt approach is a particular

heuristic solution to a problem that trust-region Newton-Raphson methods solve in

a variety of ways [59]. In this thesis, a trust-region Newton-Raphson optimization

algorithm implemented as part of this thesis has been used as a second order method.

The Steihaug-Toint method of solving the trust-region subproblem (Equation 3.13) is

applied. In brief, this method applies a conjugate gradient method to solving Equa-

tion 3.13 under the trust-region constraint. The reader is referred to [59, p. 205]

for details of the Steihaug-Toint method. Details of the algorithm, other than the

solution of the trust-region subproblem are given in Algorithm 3. This method may

be viewed as comparable to the more widely known Levenberg-Marquardt methods.
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Algorithm 3 Trust-Region Newton-Raphson optimization.

Set start position φ0; iteration counter n = 0; trust-region radius R; scaling matrix
M
Compute HφD(φ(0)), ∇φD(φ(0)) and D(φ(0))
Repeat

Compute φ(n+1) using Steihaug-Toint method [59, p. 205].
Compute Expected improvement E(n) = (φ(n+1)−φ(n)) ·∇φD(φ(n))−D(φ(n))
Compute HφD(φ(0)),∇φD(φ(n+1)) and D(φ(n+1))

Compute ρ, the ratio of real to expected improvement. ρ =
(D(φ(n+1))−D(φ(n)))

E(n)

If ρ < c0 then
// This is an unexpectedly poor result, so the model is wrong. Reject the step
and shrink the trust region.
R = γ0R

Else if ρ < c1 or step is within the trust region then
// The improvement is acceptable relative to the model, so accept the step
n = n+ 1

Else
// This improvement is good or excellent relative to the model and the step is
at the edge of the trust region. Accept the step, and expand the trust region
n = n+ 1;R = γ1R

End if
Until convergence criteria reached

The constants c0, c1, γ0 and γ1 are 0.001, 0.1, 0.1 and 2 respectively. These values were
chosen based on the recommendations in [59]. The fact that the expected improvement is
not calculated with a quadratic model is intentional, as empirical tests showed that this
seems to improve the efficiency significantly.
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The particular case of minimizing a sum of squared errors arises very frequently.

Gauss [82] was the first to use the least squared error criterion and developed an

approximation to the Hessian matrix for use in Equation 3.13. Optimization using

this Hessian approximation is frequently called Gauss-Newton optimization. This

can be confusing however, because any second order technique can be applied us-

ing the Gauss-Newton Hessian approximation. In this thesis the convention will be

adopted that all methods using a variation of Equations 3.13 or 3.14 will be called

Newton-Raphson methods. Gauss’s technique will be referred to as the Gauss-Newton

approximation of the Hessian. This method is discussed in detail in 4.3, where it is

generalized to non-least squares cost functions.

Quasi-Newton methods are a class of methods intended to gain the rapid conver-

gence of the Newton-Raphson methods without incurring the computational difficulty

of computing the Hessian matrix. They require only gradient information, and build

up an estimate of the Hessian matrix, or its inverse, from the changes observed be-

tween successive gradients. There are various ways of building up this estimate, but

the method that is currently considered superior [151, 192] is the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) [43, 79, 86, 169] method. In this thesis a limited memory

version of the BFGS method is used (referred to as LBFGS). The implementation is

described in detail in [48, 207], and the source code is freely available as part of the

ITK library [115].

3.1.12 Multiresolution Approach

For most practical direct image registration problems, multiresolution approaches

must be applied in order to avoid becoming trapped in local minima. The framework

proposed by Bergen et al. [24] is still what is widely used today. The images to be

registered are reduced in size using a process of Gaussian blurring and subsampling.

The optimization is begun on the lowest resolution of the pyramid. The optimal

parameters found at each level are then used as a starting point for the next level of

optimization.

In this work we used a Gaussian scale space pyramid, with each level being reduced

by a factor of two from the previous level. As a heuristic guide, the number of

multiresolution levels was chosen so that the top level would have at least as many
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pixels as a 64 × 64 image in two dimensions, and a 32 × 32 × 32 image in three

dimensions.

Certain authors [154, 185] have questioned the use of a Gaussian scale space for

registration with mutual information. However, the approach is widely used for regis-

tration with MI. A simple investigation shows that the Gaussian scale space achieves

the desired effect on the cost function for MI. Figure 3.3 shows the mutual infor-

mation of an image (actually the image in Figure 4.1) with a transformed version

of itself at a set of points ranging from
[
−0.28radians −16pixels −16pixels

]
to[

0.28radians 16pixels 16pixels
]

in the rigid transformation space. Note how as the

resolution is reduced, the function progressively flattens out and the region where it

slopes nicely down toward the minimum gets wider. This multiresolution approach is

effectively widening the capture radius of the MI function.

Position

M
I

Full Resolution
Reduced x2
Reduced x4

Figure 3.3 Mutual information cost function at three levels of a Gaus-
sian scale space pyramid. The line with small dots was produced using
the full resolution images, the line with circles by reduction by a factor
of 2, and the line with crosses by reduction by a factor of 4. Note how
the derivatives of the function become less extreme, and how the point of
inflection moves further from the optimum at lower resolutions.

This concludes the description of the image registration framework used in this

research. Most of the experiments take the form of performing many similar regis-

trations with the component of interest being varied. The following section discusses
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how the results of those registration runs were interpreted.

3.2 Evaluation of Results

The primary means of empirically testing the claims in this thesis is by running

many image registrations with each algorithm, and comparing the results. These

experiments are performed mainly on image pairs between which there is a known

transformation. For each such pair, a set of starting transformations is chosen. Each

starting transformation is composed with the true transformation, and this is provided

as a starting point for the optimization process. Each algorithm is provided with

exactly the same inputs, and therefore corresponding runs are directly comparable.

In general, each experiment involves collection of data on the accuracy, efficiency

and reliability of the registration process. The efficiency is measured both by mea-

suring the time required to perform the calculation, and keeping track of the number

of function evaluations, and optimizer iterations. Times were collected as elapsed

clock time required for the actual performance of the algorithm. Running time is

notoriously variable on multitasking computer systems, but several factors combine

to make these reported times as reliable as possible. Firstly, reported times are for

the algorithm itself, and I/O times have been ignored. Secondly, the vast majority

of the reported experiments were performed on cluster machines, where the machine

is dedicated to the image registration task during the programs run. Thus the vari-

ability in runtime caused by competition for resources between processes should be

minimized.

The accuracy is measured by computing the mean target registration error (mTRE)

between the final transform and the true transform. In order to evaluate the results

of a registration, it is necessary to quantify how “close” a particular registration is to

the right answer. There are a number of possible measures of distance between trans-

formations. Van de Kraats et al. [190] have proposed that registration comparisons

should use the mTRE over the region of interest. In [190] this is computed using a grid

of points over the image extent. The same method is used in this thesis. For transfor-

mations based on the matrix groups, we use a 10× 10 grid (in 2D, a 10× 10× 10 grid

in 3D) of points evenly spaced in the image extent. For transformations commonly
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considered deformable (i.e., spline based transforms) a 50× 50× 50 grid of points is

used.

Finally the reliability is considered in terms of how often the algorithm failed. The

algorithm could fail in one of two ways. The more obvious way is that the optimization

fails to converge, and an error is reported. A rule was also imposed that if the mTRE

was greater than 5 pixels, the run would be considered to have failed. This approach

was taken because a single run that converges incorrectly could artificially distort

the mTRE. Fortunately, this criterion was rarely ambiguous. Failed runs were not

considered in the comparisons of runtime and accuracy.

3.2.1 Statistical Testing

Since each algorithm being tested was run on the same set of test inputs, paired

comparisons can be used to test for significance. That is, algorithms can be compared

on a run by run basis with identical inputs. This provides a much finer ability to

detect differences between the algorithms. In all cases, the tests were performed at

the 95% confidence level, after applying any corrections.

Numerical quantities such as running time and mTRE were tested for statistical

significance using the paired t-test [171, pp. 433–61]. The paired t-test tests the

hypothesis that the differences between corresponding samples have a mean of zero.

A rejection of this hypothesis justifies a conclusion that there is a significant difference

in the results of two algorithms. The paired t-test is appropriate when using interval

data – that is that the magnitude of the numbers has real meaning, and the differences

can be considered to have a normal distribution.

Letting the mean of the N differences between the matched pairs be X̄, and the

standard deviation of these differences be σ, the t-statistic is

t =

√
NX̄

σ

If the mean of the differences is zero, this statistic will be drawn from a t-distribution

with N − 1 degrees of freedom [171, pp. 433–61].

The failure of an algorithm is a binary event, it either failed or it succeeded. Thus

a different significance test is needed in this case, and the McNemar test [171, pp. 491–
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508] was used. The McNemar test sets up a contingency table listing all the possible

outcomes. Specifically,

Algorithm 1 passed Algorithm 1 failed

Algorithm 2 passed a b

Algorithm 2 failed c d

The McNemar test examines whether there is a difference between b and c using a

sign test. If there is no difference between the algorithms (the null hypothesis), b will

be drawn from a binomial distribution B(b + c, 0.5). A rejection of this hypothesis

justifies a conclusion that there is a significant difference in failure rate between the

algorithms.

Statistical hypothesis testing suffers from the problem that the tests can only show

statistical differences, not statistical “sameness”. For example, the tests cannot detect

whether both algorithms have the same failure rate. Instead, what can be stated is

whether or not a difference in their failure rates can be detected. When multiple

comparisons are performed as in these experiments, pure chance dictates that some

Type I errors, or false rejections of the null hypothesis, H0, will occur.

To account for this problem, a correction must be applied to the test statistic

which increases the difference required to declare a particular result significant. For

the mTRE and timing data the Tukey correction was applied. This replaces the

test statistic from the student t distribution with one from the studentized range

distribution [171, pp. 534–5], which accounts for the extra comparisons. The failure

rate tests were adjusted using the Bonferroni-Dunn correction. The Bonferroni-Dunn

correction simply recomputes the test statistic at a significance level divided by the

number of comparisons being made, which reduces the possibility of Type I error in

accordance with the Bonferroni inequality [171, pp. 531–4].

These corrections do however reduce the power of the tests and tend to increase the

likelihood of a Type II error, or false acceptance of H0. Depending on the hypothesis

under test, either of these types of errors might artificially bolster the argument. For

instance, the correction for multiple comparisons could easily hide a statistical differ-

ence in algorithm failure rates. Conversely, not correcting for multiple comparisons

could artificially indicate a difference in running time where none exists. Therefore,

all three possible cases are reported. Where the corrected tests rejected H0, it can be
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concluded that the performance of the two algorithms differ. When H0 was rejected

using pairwise comparisons, but accepted when adjusted for multiple comparisons the

result is considered ambiguous, and finally when H0 was accepted by all tests, the

data do not indicate a performance difference between these algorithms.

3.2.2 Comparing Deformable Transforms

Understanding the accuracy of a deformable registration is not as simple as the case

of the matrix based transformation. In the case of matrix based transforms, errors

in the recovered transformation affect the entire image in a more or less even way.

Residual error is lowest at some point, and then increases radially away from that

point. However, in the case of a deformable transformation different regions may be

registered to greatly differing levels of accuracy. A very accurate part of the transfor-

mation can tend to average away a very inaccurate part, and vice-versa. Therefore,

rather than reporting mTRE, histograms of the resulting errors are examined. These

show better the change in the overall error produced by the registration. To generate

these histograms the residual errors on the same 50d grid of points used for the mTRE

calculation are kept, and their distribution plotted.

Nevertheless, the ultimate goal of the experiments is to be able to make a statement

such as “method A outperforms method B”. For the case of deformable transforma-

tions, just like the matrix based transforms, paired runs can be compared. For each

such pair, one run (A) will be considered better than another (B) if the following

criteria are met:

1. The runs have a statistically significantly different median error when all the

data is considered, and,

2. the median error of A is lower than the median error of B.

A statistically significant difference in median is detected with the rank-sum, or Mann-

Whitney “U”, test [171, pp. 181-94] on all the errors from both cases. This test orders

the set of errors, and determines if either case falls above or below the other in rank

enough times to reject the null hypothesis. This test was chosen as it is suitable for

non-normal data, and the distributions of errors very clearly does not follow a normal

distribution.
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3.3 Summary

In order to test each of the improvements to image registration algorithms proposed

in this thesis, software has been implemented which can perform registration on two

and three dimensional images. The software was implemented using the ITK library,

which provides well tested implementations of standard registration algorithms. Using

a well-tested standard implementation helps to reduce the chance of researcher bias.

For all experiments, registration was performed using linear interpolation and a

multiresolution technique based on Gaussian pyramids created for each image. De-

pending on the nature of the components being tested, various transforms are used,

including two and three dimensional rigid and affine transforms, two dimensional ho-

mographies and the deformable thin plate spline and B-spline models. A range of

optimizers are also used, including the downhill simplex algorithm, Powell’s method,

two variations on gradient descent, a limited-memory BFGS algorithm and a trust-

region Newton-Raphson technique.

The majority of the experiments to be shown in Chapters 4, 5, 6, and 7 take the

form of comparisons of two algorithms. These comparisons are performed by running

each algorithm on identical input and observing the time required, accuracy and

success rate. Statistical testing techniques are used to ensure that the observed results

are in fact significant. The following chapter begins the theoretical and experimental

contributions of this thesis with an analysis of the optimization component of image

registration.
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Chapter 4

Optimizer Selection and Scaling in

Image Registration

The previous chapters have shown how the direct parameterized registration problem

is expressed as an optimization problem over the parameters of the transformation.

It is obvious that the selection and configuration of the optimization algorithm used

has a huge influence on the success of any approach. However, most reported stud-

ies of optimization algorithms in this context have compared optimizers for specific

registration contexts. If a particular registration problem is not the same as those

studied, it is not clear how to generalize the previous work. The primary goal of this

chapter is to determine how the specific registration problem characteristics affect

the performance of optimization algorithms in order to develop a principled way of

selecting and configuring an appropriate algorithm for any given context. However,

comparing the performance of optimization algorithms is only meaningful if they are

correctly configured and supplied with valid input. Two significant factors affecting

performance have not been well analyzed in previous work. These are (1) the calcu-

lation of approximate Hessians when Newton-Raphson optimizers are used, and (2)

the scaling of the transformation parameters.

To use Newton-Raphson optimization algorithms for image registration, it is nec-

essary to have a valid approximate Hessian calculation. For least-squares problems the

Gauss-Newton approximation to the Hessian has proved very effective. In this thesis,

the Gauss-Newton approximation is generalized to non-least squares cost functions
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for the first time. It is shown that the resulting approximate Hessians are effective for

both normalized correlation and mutual information. It is also shown that previous

approximations to the Hessian of mutual information are ineffective.

It is known that the scaling of the parameter space has a significant effect on the

performance of optimization algorithms. Image registration work in the literature

often reports using scaling factors (e.g., [26, 109, 172, 194]), but these are determined

in an ad-hoc way. In this chapter, the issue of scaling is analyzed and a method for

automatically determining an optimal set of scaling factors for any given optimization

problem is developed. It is shown that the scaling of the transformation parameters

plays a critical role in optimizer performance on matrix based transforms.

This chapter then deals with three intertwining issues – (1) approximate Hessian

calculation, (2) parameter scaling, and (3) optimizer selection. It is therefore struc-

tured in three main investigative components. Each component is presented with its

own set of experiments so that the topic is complete, and the result of the analy-

sis can be applied in the subsequent investigations. The following section discusses

previous work. To avoid repetition, Section 4.2 then presents the experimental data

that is used in all three investigations. Section 4.3 develops of a generalization of the

Gauss-Newton Hessian approximation, with simulations on a simple problem to show

the effectiveness of the approximation, and simulated image registration experiments

to verify the effectiveness of the approach. Section 4.5 discusses the importance of

parameter scaling, and derives a method for automatic selection of optimal scaling of

the transformation parameters. The scaling is tested on a wide range of simulated

and real image registration problems. The experiments show conclusively that using

these optimal scaling factors improves performance on matrix based transforms. Once

the issues of Hessian calculation and scaling have been addressed, it is finally possible

to return to the motivating question of this chapter: Given a registration problem,

which optimizer should be used? Section 4.6 first analyzes the expected behavior of

the optimization algorithms. Simple toy problem experiments are presented to il-

lustrate the results of this analysis, followed by extensive experiments on simulated

and realistic image registration problems. Based on the results of the analysis and

the experiments, the key characteristics of registration problems that affect optimizer

performance have been identified, and general guidelines for optimizer selection have
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been developed. Finally Section 4.7 reviews the combination of results found, and

summarizes the results in the form of guidelines.

Publications

A very preliminary version of the work on parameter scaling in Section 4.5 was de-

scribed in:

[37] Rupert Brooks, D. Louis Collins, and Tal Arbel. Scaling angles and

distances to maximize efficiency of image registration. Short paper pre-

sented at the 8th International Conference on Medical Image Computing

and Computer Aided Intervention (MICCAI 2005), October 2005. avail-

able online http://www.ia.unc.edu/MICCAI2005/ShortPapers/.

4.1 Previous Work

Recall that the direct, parameterized image registration problem can be expressed as

the following optimization problem,

φopt = argmin
φ

(D(If (X), Im(W (X,φ)))) , (4.1)

which considers the optimal transformation parameters, φopt, to be those that mini-

mize a difference measure between a fixed image, If , and a transformed moving image,

Im(W (X,φ)) [91, 145].

Many different algorithms for unconstrained optimization have been applied to this

problem. Table 4.1 summarizes the use of different algorithms listed in two surveys of

medical image registration [138, 155]. From these surveys, it appears that the downhill

simplex, Powell’s method and gradient descent are very popular approaches. The

Levenberg-Marquardt technique is popular in [138], but much less popular in [155].

This can perhaps be explained by the fact that [155] surveys mutual information

registration only, and calculation of the MI Hessian is difficult. An examination of

the more recent literature suggests there is a trend toward the use of the LBFGS

quasi-Newton optimizer for B-spline transforms (e. g. [124, 142, 165, 198]), quite

possibly due to its easy availability in the ITK [109] library. In the computer vision

http://www.ia.unc.edu/MICCAI2005/ShortPapers/
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field, a survey itemizing a count of different approaches could not be found, but

two recent surveys [181, 208] support the idea that most approaches use a Newton-

Raphson optimization of a squared difference measure with the Hessian approximated

using the Gauss-Newton method. These approaches are based on the Lucas-Kanade

algorithm [136]. For computer vision problems where this approach is not viable, no

clear preference is apparent.

Optimization Approach Count in [138] Count in [155]
Downhill Simplex 12 16
Powell’s Method 17 16

Misc. Direction Set 8 -
Misc. Gradient Descent 11 16

Quasi-Newton - 2
Levenberg-Marquardt 12 2

Newton-Raphson 3 -
Other 24 7

Table 4.1 Number of image registration papers using various optimiza-
tion algorithms reported in survey papers. The category of other contains
methods to which the discussion in this paper does not apply, such as sim-
ulated annealing, genetic algorithms, etc.

Several authors have previously examined the question of which optimizers are best

for a particular registration application. The work of Floca and Dickhaus [81] takes

perhaps the ultimate empirical approach to this question. They propose a system

to exhaustively explore the space of possible optimizers and parameter settings for

registration problems. In effect, they optimize over optimizers. While interesting, this

approach may not scale well to anything other than very small, focused, problems.

Bernon et al. [25, 26] compared the downhill simplex and Powell optimizers in

the context of registering segmented MR and SPECT data using a mutual informa-

tion (MI) cost function. Overall, [25, 26] concluded that downhill simplex was better

than Powell’s, but this result was only reached after much adjustment of the origi-

nal problem configuration. Their initial results showed that Powell’s algorithm was

much more reliable than the downhill simplex, but much slower. However, they ul-

timately changed their problem construction to a sort of multiresolution approach

which improved the performance of the downhill simplex algorithm. In [26] they
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briefly addressed the issue of how performance varied with the number of parame-

ters by comparing the performance of their algorithms on a 6-parameter rigid and

a 9-parameter similarity transform. They reported that the performance of both

algorithms was much worse on the 9 parameter one.

Maes et al. [137] compared Downhill Simplex, Powell, gradient-descent, Polak-

Ribiere conjugate gradient, LBFGS and Levenberg-Marquardt algorithms in the con-

text of multiresolution affine registration with MI. All algorithms were adjusted to

converge to the same level of accuracy, and there were no failures. Thus the primary

measurement of algorithm quality was timing, and they found that the downhill sim-

plex, conjugate gradient and Levenberg-Marquardt were faster than the others. Their

calculation of the Hessian for the Levenberg-Marquardt approach is unusual, an issue

discussed further in Section 4.3. Regrettably, however, there was no discussion of

scaling or parameterization in [137], which this chapter will show is a critical factor

in determining performance.

Klein et al. [120] compared a number of optimization algorithms for the problem

of deformable registration with B-splines. They compared the algorithms in terms of

speed and accuracy. Accuracy was measured by the average displacement error after

recovery of a simulated deformation field, and the overlap of segmented structures in

real data. This work included both deterministic approaches – where they compared

two types of gradient descent, Nonlinear Conjugate Gradient (NCG), and LBFGS –

and stochastic optimization approaches, including Keifer-Wolfowicz, Robbins-Monro

and an evolutionary strategy. Overall, their conclusions were that the LBFGS, and

NCG performance were roughly similar, with NCG being somewhat less computa-

tionally efficient. Gradient descent was found to perform somewhat poorer on both

criteria than either the LBFGS or NCG methods. Of the stochastic approaches, the

Robbins-Monro method proved superior, and was the method that they concluded

was ideal.

Trust-region optimization has not been widely used in image registration. How-

ever, Liu and Chen [132] have made a strong argument that trust-region optimization

approaches were faster than line-search based approaches for a template based track-

ing problem. They were performing Newton-Raphson optimization using a histogram-

based measure between a template, and its location in a new frame. Because the
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tracking context is time sensitive, they conclude with a clear preference for the faster

algorithm, and did not investigate precision or reliability.

Thévenaz and Unser [186] proposed a modified Levenberg-Marquardt algorithm

for optimization of MI. Their modification is based around an approximation to the MI

Hessian that they develop by truncating the Taylor series expression. They present

good results in terms of accuracy with their algorithm but the issues of speed or

number of iterations are not discussed. However the other algorithms against which

they compare differ in many aspects, in particular in how the MI is computed. Dowson

and Bowden [70] perform the same truncation of the Taylor series. Optimization

methods were not the focus of their work, and they use only Levenberg-Marquardt

optimization. In Section 4.3 this Hessian approximation will be discussed and it will

be shown that it does not describe the true curvature of the MI function well. The

findings in this thesis are that Newton-Raphson type optimization schemes with this

approximation are no more effective than gradient descent. Fortunately, a better

approximation is possible.

Each of the optimization comparison studies in the literature has concentrated

on a specific problem domain, and the question of how to generalize the results has

not been addressed. Previous work on Newton-Raphson optimization of MI, it will

be shown, has not properly approximated the Hessian, and in [70, 185, 186] has

not addressed the question of whether using the Hessian actually helps optimization

performance. Finally, the issue of scaling the transformation parameters has not

been formally addressed. This chapter will address all these issues using a common

experimental framework and data. To avoid repetition, these common elements are

discussed in the following section.

4.2 Materials and Methods

To address the issue of optimizer choice in a generalizable way, this chapter inves-

tigates the performance of five optimization algorithms: (1) the downhill simplex

algorithm, (2) Powell’s algorithm, (3) a Trust-Region Gradient Descent algorithm,

(4) the LBFGS quasi-Newton algorithm, and (5) a Trust-Region Newton-Raphson

algorithm. Details on all these approaches have been given in Section 3.1.10. These
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optimizations have been applied to registrations using mean squared difference (MSD,

Section 3.1.2), normalized correlation (NCC, Section 3.1.3) and mutual information

(MI, Section 3.1.4). These optimization algorithms and image difference measures are

applied to eight different transformations and six different datasets which are detailed

below.

4.2.1 Transformations Used

The image registration experiments have been selected to use a range of transfor-

mations of different types, with different numbers of parameters. Specifically the

experiments use four matrix transforms (see Section 3.1.6): (1) a 2D rigid transfor-

mation, (2) a 3D rigid transformation, (3) a 2D homography transformation and (4) a

3D affine transformation; and four deformable transforms: (5) a 2D thin plate spline

(TPS) transformation defined by 20 landmarks, (6) a 2D B-spline transformation de-

fined on a 4×4 grid, (7) a 3D TPS transformation defined on 48 landmarks and (8) a

3D B-spline transformation on a 4×4×4 grid. Transforms 1, 2, and 4 are most widely

used in medical imaging contexts, whereas transform 3 is of particular importance in

computer vision, since it models the relationship between images taken from a rotat-

ing camera. The four deformable transforms are also most widely used in medical

imaging, although variations on the TPS transform have interesting computer vision

applications as well [20, 21].

The TPS transform is defined by a set of corresponding landmark points in both

images. Rather than manually selecting landmark points, a method was developed to

create evenly distributed meshes of points suitable for use as landmarks in a thin plate

spline. This method was used to create two point distributions to define transforms (5)

and (7). The procedure for generating these point distributions is further described in

Appendix C. As discussed in Section 3.1.9, the B-spline transformation is completely

defined by specifying the size of the grid used to span the image. Note that the

B-spline grid is padded, so a 4 × 4 transform also has 33 additional control points

outside the image.
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4.2.2 Intensity Distortion

Each of the image difference measures being used is appropriate for different situations.

MSD is suitable when the image intensities match exactly, but NCC and MI are

intended for cases with linear, and non-linear intensity distortion respectively. To

simulate this the intensities of the images are distorted for the cases where MI and

NCC are used. Figure 4.1 shows one of the images used for several experiments under

each type of intensity distortion.

(a) Original image (b) linear distortion (c) nonlinear distortion

Figure 4.1 (a) Sagittal T1-weighted MRI slice of the brain used as a
base for 2D rigid and deformable synthetic registration problems. This
figure also shows examples of the intensity distortions used in all NCC
and MI registration cases. For the NCC measure, the intensities (which
started in the range 0-255) were rescaled to be between 64 and 192 (b).
For the MI measure, the following nonlinear distortion was applied. Iout =
256 ∗ (Iin/256− 0.5)2 + 127 (c). This image was collected at the Montreal
Neurological Institute.

4.2.3 Simulated Registration Problems

A simulated registration problem has been defined for each of the transformations

of interest. For each transformation a typical image where this type of transforma-

tion would be relevant was selected and used as a base. For each case, five random

transformations were created and the selected base images were warped by these

transformations. For the matrix based transforms, the images were warped using the

same type of transformation as was being recovered. Thus it was possible, at least in
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principle, to recover the transformation exactly. For the deformable transformations,

however, the images were warped by a random deformation of a different type than

was recovered, specifically a 5×5 B-spline in 2D and a 5×5×5 B-spline in 3D. There-

fore the deformation cannot be recovered perfectly, which more closely approximates

real conditions. In each case, the registration process to recover the synthetic warp

was started from a set of different randomly generated starting positions, leading to

a large enough number of runs for statistical testing to be performed. The number

of starting positions and their ranges (in mTRE) from the true starting position are

listed in Table 4.2 for all registration problems.

Registration Problem # Starts # Cases # Runs mTRE Range
Synthetic Problems

2D Rigid 15 5 75 3–36mm
2D Homography 60 5 300 2.6–62pixels
3D Rigid / Affine 45 5 225 2–42mm
2D Deformable 5 5 25 2.8mm∗

3D Deformable 5 5 25 3.1mm∗

Realistic Problems
Axial Brain Slices 60 8 480 8–60mm
Vertebra Volumes 40 6 240 4–26mm
Deformable Phantom 1 4 4 2.2–5.2mm∗

Table 4.2 For each registration test problem a set of random start posi-
tions were determined (# Starts), and there were a number of image pairs
to register (# Cases). Thus the total shown in # Runs was performed
for each optimizer, scale factor, and image difference tested. The mTRE
range column shows the range of mTRE for the starting positions used.

∗ Deformable mTRE’s reported as median target registration error.

Figure 4.2 Brainweb volume used for simulated registration experi-
ments
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Copies of the base image were also given the intensity distortions shown in Fig-

ure 4.1 for use with the NCC and MI measures. The registration experiments were

conducted using the warped image, which does not have intensity distortion, as a fixed

image, and the (possibly intensity distorted) base images as the moving image. The

image shown in Figure 4.1 was used for the 2D rigid, 2D TPS and 2D B-spline tests.

Examples of the warped images used are shown in Figures 4.4a and 4.4b. For the 3D

rigid and affine tests, a simulated T1 volume from the Brainweb [123] software was

used (see Figure 4.2). For the 3D TPS and B-spline tests, the partially inflated case

of the deformable phantom volumes used in the realistic experiments (described in

the following section, see Figure 4.7b) was chosen as a base image. Examples warped

by one of the random warps used are shown in Figure 4.4e.

(a) Original (b) Original cropped to ROI (c) Example of warped
image

Figure 4.3 Agra fort image used as base for homography tests, with
example random warp.

The homography transformation is more relevant to computer vision than it is

to medical imaging. Therefore a digital photo was used as a base image for these

synthetic registration experiments. The image was warped by the randomly generated

transformation, and the central part of the image was then cropped out. This cropping

process avoided having the edge of the image in the region to be registered, which

could have skewed the results. The original image, and an example of the warped

input data are shown in Figure 4.3. All work was done with greyscale versions of the

images.
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(a) 2D sagittal brain MR slice
warped by rigid transformation

(b) 2D sagittal brain MR slice warped by deformable
transform also showing deformation field

(c) Example cross sections through 3D simulated brain MR volume
warped by rigid transformation

(d) Example cross sections through 3D simulated brain MR volume
warped by affine transformation

(e) Example cross sections through MR image of deformable phantom
warped by 3D deformable transformation

Figure 4.4 Difference images showing typical random warps that were
applied to each base image to generate the simulated registration prob-
lems.
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4.2.4 Realistic Registration Problems

Simulated registration problems provide a precise gold standard for accuracy since the

deformation is known exactly. However, real registration conditions are more difficult.

Each image of a given image pair to be registered may have different patterns of noise,

and different real distortions in the object being imaged. For multimodal datasets, the

intensity relationship is generally more complex than the intensity distortion applied

in the simulated case. For these reasons, it is desirable to do additional experiments

on realistic image registration cases to confirm results found in the simulated cases.

Three realistic datasets were used:

1. Axial Brain Slices: This is a set of matched 2D slices taken from previously

independently registered brain volumes in four different modalities: Proton Den-

sity (PD), T1-weighted, and T2-weighted magnetic resonance images (MRI) and

a computed tomography (CT) image. These are shown in Figure 4.5. This data

was provided by the Montreal Neurological Institute.

2. Vertebral Volumes: These are two sets of three previously registered volume

images of cadaver vertebrae discussed in [190] and provided by the authors of

that paper. Three modalities, computed tomography (CT), 3D X-ray (3DRX)

and Magnetic Resonance Imaging (MRI) are provided. The CT volume was

resampled to a 0.75mm isotropic pixel size to be roughly compatible in size

with the other datasets. Example slices are shown in Figure 4.6.

3. Deformable Phantom: These are magnetic resonance (MR) images of a de-

formable phantom object created by Dr. Xavier Morandi. The phantom con-

tains a balloon which can be inflated to cause a deformation. A volume of

interest containing the balloon was selected and cropped out. This volume was

selected as it undergoes significant deformation, also, by working on a cropped

dataset, edge effects could be avoided when a synthetic deformation was ap-

plied. The volume was imaged in three states of inflation of the balloon, shown

in Figure 4.7.

For datasets 1 and 2, ground truth transformations were provided with the data.

For the deformable phantom object, no ground truth was easily available. To create
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a measure of accuracy, the surface of the balloon object was segmented into a dense

mesh using an automatic iso-surface finding algorithm. The resolution of this mesh

was approximately 1mm. It is to be expected that a correct transformation should

map points from the mesh of the balloon in the fixed image near to points in the mesh

of the balloon in the moving image. The procedure for determining the accuracy of a

registration of these volumes was as follows.

1. Warp the balloon mesh corresponding to the fixed image by the transformation

found by the registration.

2. Match points in this warped mesh to the nearest point in the balloon mesh of

the moving image.

3. Compute distances between these matched points. The distribution of these

distances may be examined as discussed in Section 3.2.2.

Table 4.3 summarizes the properties of all the datasets, and the parameters of the

registration experiments.

(a) PD (b) T1 (c) T2 (d) CT

Figure 4.5 Multimodal axial slices.

4.2.5 Optimizer Settings

All of the optimization algorithms used require parameters – stopping criteria – for

specifying their precision. Obviously if one algorithm was given much more refined

stopping criteria than another, it would appear to be slower, but more precise. An
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(a) 3DRX (b) CT (c) MR

Figure 4.6 Example cadaver vertebra images.

Dataset Size Resolution Levels % Pxl Experiments
Sagittal Brain
Slice

240× 256 1mm 2 100% Simulated 2D Rigid,
TPS, B-spline

Axial Brain
Slices

217× 181 1mm 2 100% Realistic 2D Rigid

Agra Fort 1000× 700 n/a 4 30% Simulated Homographies

Brainweb Sim-
ulated MR

181× 217× 180 1mm 3 30% Simulated 3D Rigid,
Affine

Vertebrae Varies Varies 3 100% Realistic 3D Rigid

Deformable
Phantom

61× 78× 55 1mm 2 70% Simulated 3D TPS, B-
spline. Realistic 3D
TPS, B-spline.

Table 4.3 Summary of Registration and Dataset characteristics. The
Levels column refers to the number of multiresolution levels which were
used in the optimization. For speed of processing, certain datasets were
registered using a random subset of the pixels in the image. The % pxl
column indicates the size of that subset.

effort was made to choose the criteria in a straightforward manner and avoid “tweak-

ing”. Table 4.4 details the parameter settings for each algorithm. These were held

fixed for all the registration experiments.

These transformations, datasets and optimizer settings define the experimental

context used in the subsequent sections of this chapter. The following section begins

the investigation into optimizer performance by analyzing methods of approximating

the Hessian matrix in image registration problems.
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(a) Cross sections through deformable phantom volume:
Fully Inflated case

(b) Cross sections through deformable phantom volume:
Partially inflated case

(c) Cross sections through deformable phantom volume:
Deflated case

Figure 4.7 Deformable phantom volumes.
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Algorithm Criterion Value Reason

Downhill Simplex
φ tolerance 0.01 precision
D tolerance 0.0001 p2 based on [85]
Start simplex size 1 Similar to T-R

Powell
φ tolerance 0.01 precision
D tolerance 0.0001 Dtol = p2 based on [85]
Step size 1 Similar to T-R

BFGS
D tolerance 0.0001 Dtol = p2 based on [85]
Minimum ||∇D|| 0.0001 ∇Dtol = p2 based

on [85]

T-R Grad. Descent
Minimum Step Size 0.005 p/2
Minimum ||∇D|| 0.0001 ∇Dtol = p2 based

on [85]
Starting T-R 1 a safe step size

Newton-Raphson
Minimum Step Size 0.005 p/2
Minimum ||∇D|| 0.0001 ∇Dtol = p2 based

on [85]
Starting T-R 1 a safe step size

Table 4.4 Settings and justifications for optimizer parameters. A nom-
inal precision of p = 0.01 was used as a guideline for parameter setting.

4.3 Approximating the Hessian

The Hessian, or an approximation of it, is required for Newton-Raphson type optimiz-

ers. Most image registration applications in computer vision use a squared-difference

cost function and form a Gauss-Newton approximation of its Hessian [136, 181, 208].

However, MSD is only applicable to a narrow range of image registration problems as

it requires the assumption that intensities are identical in the images being matched.

The NCC and MI image difference measures are more relevant when this assumption

does not hold. Mutual information in particular is not a least-squares function, and

calculating its Hessian is significantly more difficult than for MSD. This section ex-

amines the Gauss-Newton approximation for the squared difference case, and then

shows how its fundamental insight can be extended to other cost functions.

4.3.1 The Gauss-Newton Approximation

The Gauss-Newton approximation of the Hessian is a method for applying the Newton-

Raphson optimization to least-squares problems, i.e., problems formulated as the
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minimization of a sum of squared errors,

φopt = argmin
φ

(
D = [l − f(φ)]T Z [l − f(φ)]T

)
, (4.2)

where l is a vector of observations, and f is the predictions of those observations from

the model. The central term Z is the weight matrix, which is often simply the identity

matrix, but may also be the inverse covariance matrix of the observations, if that is

available. In an image registration context, the vector of observations corresponds

to the pixels in the image, and the overall cost function is usually weighted by the

number of pixels in the image to give the MSD image difference measure:

DMSD(φ) =
1

N

N∑
i=1

N∑
j=1

Zij(If (Xi)− Im(W (xj,φ))2. (4.3)

This is equivalent to Equation 3.1 except for the addition of a weight matrix, Z. This

weight matrix, Z, is nearly always the identity in an image registration context, but

it is informative for the following discussion so it will be left in the derivation. The

derivative of this cost function is given by

∇φDMSD(φ) =
−2

N
[(If (X)− Im(W (X,φ)))] ·Z · ∂Im(φ)

∂φ
(4.4)

and its Hessian:

∂2DMSD(φ)

∂φ2
=

2

N

∂Im(φ)

∂φ

T

·Z · ∂Im(φ)

∂φ
− 2

N
[If − Im(φ)]T ·Z · ∂

2Im(φ)

∂φ2
(4.5)

The Gauss-Newton approximation drops the second term, on the grounds (or perhaps

in the hopes) that it is small. More will be said about the size of this term later.

The Gauss-Newton method has a nice visual interpretation [173]. Imagine each

image as a point in the (high-dimensional) space of images. The point representing the

moving image can be shifted in this space by changing the transformation parameters.

The image registration problem is to move this point to minimize the distance between

it and the point representing the fixed image. When the cost function is (weighted)

mean squares, this distance corresponds to the usual (weighted) Euclidean distance,
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as shown in Figure 4.8.

Moving image

Fixed image

Gauss-Newton Point

Figure 4.8 The Gauss-Newton step. The derivative of the moving im-
age with respect to the transformation parameters creates a hyperplane
in the space of possible images. The Gauss-Newton step is the point on
this hyperplane closest in a Euclidean sense to the fixed image.

The derivative of the moving image with respect to the N transformation pa-

rameters creates a N -dimensional hyperplane in the image space. This hyperplane

represents the expected appearance change given a small change in the parameters.

In other words, it is the tangent to the appearance manifold defined by the transfor-

mation parameters. When the cost function is the mean squared difference between

pixel values, the Gauss-Newton step is the point on this hyperplane that is closest to

the fixed image. The key reason the Gauss-Newton method is effective in image regis-

tration is that the hyperplane induced by the derivative is a reasonable approximation

of how the actual image warps due to the transformation.

4.3.2 How Good is the Gauss-Newton Approximation?

The validity of the Gauss-Newton approximation has not really been explored in

the context of image registration, although its successful application (e.g., [136, 172,

181]) suggests that it works well. Some estimate of the relative weights between

the two terms in Equation 4.5 can be derived by considering that the first term is

always positive semi-definite, while the second term may be positive definite, negative

definite, or indefinite. Thus the first term will tend to grow proportional to the number

of elements in I. Assuming that the second term is not biased in some way, then it will
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remain roughly the same size, or grow slowly as the size of I increases. Therefore, in

general, the Gauss-Newton approximation is better the larger the number of elements

in I. It is important to note, however, that this argument depends on the assumption

of no bias in the second term – if this is not true, the approximation may be poor

regardless of the size of I.

The best way to test the approximation may be by empirical means. This is

fairly impractical in the true image registration case. In addition to time required for

computation, the second term involves second derivatives of an interpolated image,

thus image noise and interpolation artifacts would most likely make the results un-

interpretable. However, it is feasible to examine the accuracy of the Gauss-Newton

approximation using a proxy problem which can be calculated exactly.

Consider the 1D problem of aligning two signals, f(x) and g(W (x, p)), where

W (x, p) is simply x + p. Thus p is the single parameter of the very simple warp, W .

Two one-dimensional “images” will be created by sampling at integral x positions

from 0 − 200. Given these exact expressions for g, and f , DMSD, its exact first and

second derivatives, and the Gauss-Newton approximation to its second derivative can

all be computed. Each of these can be used to create an approximate version of

the function which can be compared, both visually and numerically, to the real cost

function. Specifically, the image functions f, g will be stretched sine waves:

f(x) = sin
√
x+ 200; g(x, p) = sin

√
x+ p; x > 0 (4.6)

These are shown for five different positions of the “warp” parameter, p, in Figure 4.9.

p=151
f(x)
g(x)

p=175
f(x)
g(x)

p=200
f(x)
g(x)

p=225
f(x)
g(x)

p=250
f(x)
g(x)

Figure 4.9 The simple functions used for testing the MSD Gauss-
Newton approximation. The fixed and moving one-dimensional images
are shown for values of the parameter, p, ranging from 151 to 250. Cor-
rect registration of the functions occurs at p = 200.
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Figure 4.10 The actual function, DMSD, the full Taylor series approx-
imation, D2, the Gauss-Newton approximation, DGN , and a linear ap-
proximation, D1, for Mean Squared Difference. The calculated case (left)
shows the comparison to a full, exactly computed Taylor series. The real
case (right) shows the estimate of the cost function computed using the
Gauss-Newton Hessian approximation for a real image.

The three approximations that will be compared are the linear approximation due

to the gradient alone

DMSD1(p) = D(p0) + (p− p0)
∂DMSD

∂g

∂g

∂p
, (4.7)

the Gauss-Newton approximation,

DMSDGN
(p) = DMSD1(p) + 0.5(p− p0)

∂g

∂p

T ∂g

∂p
(p− p0), (4.8)

and the complete second order Taylor series approximation

DMSD2(p) = DMSDGN
(p) + 0.5(p− p0)

∂DMSD

∂g

∂2g

∂p2
(p− p0). (4.9)

These are shown in Figure 4.10a. The Gauss-Newton approximation and the complete

second order Taylor series approximation are visually nearly indistinguishable. As a

numerical comparison, the average absolute percentage difference (over the entire
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graphed range) between the estimates of the function three samples away using each

method is used:

err =

∑N
i=3

[
|f̂i−3(pi)− f(pi)|+ |f̂i(pi−3)− f(pi−3)|

]
2
∑N

i=3 |f(pi)− f(pi−3)|
(4.10)

where f̂i is the approximation of the function centered on pi. The Gauss-Newton

approximation yields an error of 1.84%, while using the full Hessian yields an error of

1.82%. Both are clearly superior to the linear approximation, which yields an error

of 5.43%. Clearly both estimate the function well, and the difference between them

is minimal.

A visual example of the real image difference measure is shown in Figure 4.10b.

This shows a plot of DMSD for the image in Figure 4.1 and a transformed version

of itself. The function is computed along a line in the parameter space of 2D rigid

transforms. At the indicated point in the curve the derivative and Gauss-Newton

approximate Hessian have been collected and used to derive an approximation of the

cost function. The approximation to the function based on the calculated Gauss-

Newton Hessian is a good approximation of the real function.

4.4 Generalizing the Gauss-Newton Approximation

The Gauss-Newton approximation is very useful for least squares problems, but Hes-

sian approximations are also necessary for the case of cost functions that are not

least squares. Making an ad-hoc approximation without careful justification can lead

to a poor Hessian approximation, which will tend to hinder, rather than help, the

optimization performance.

Maes et al. [137] proposed very simple approach to generalizing this approximation,

based on [158, Chap. 15]. They consider the cost function to be a single equation

measuring the goodness of a model, and then apply least squares minimization to this

model. That is, they minimize D2, which has a derivative,

∂D2

∂φ
= 2 ·D · ∂D

∂φ
(4.11)
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and a Hessian
∂2D2

∂φ2
= 2 · ∂D

∂φ

T ∂D

∂φ
+ 2 ·D · ∂

2D

∂φ2
(4.12)

The “Gauss-Newton” approximation, in this case, is to drop the second term in Equa-

tion 4.12.

Unfortunately, this approximation cannot be justified, as it is highly unlikely that

the second term is small. Consider that the truncated term in the approximation

above is 2D ∂2D
∂φ2 . This approximation has truncated all the second derivatives of the

original cost function and thus is roughly equivalent to gradient descent on the original

function.

To apply the Gauss-Newton method to other cost functions, reconsider Equa-

tion 4.3. The general case is to consider an arbitrary cost measure, D, which is a

function of a vector valued function, I, which is, in turn, a function of a vector of

model parameters, φ.

D = D(I(φ)) (4.13)

This can be expanded to second order as a Taylor series as follows

D(I(φ)) ≈ D(I(φ0)) + (φ− φ0)
∂D

∂I
· ∂I
∂φ

+0.5(φ− φ0)
∂I

∂φ

∂2D

∂I2
· ∂I
∂φ

(φ− φ0)

+0.5(φ− φ0)
∂D

∂I
· ∂

2I

∂φ2
(φ− φ0) + ...

(4.14)

Observe that because the function being approximated is a composition of functions,

there are two second order terms in its Taylor series. The Gauss-Newton approxi-

mation is to truncate the series one term earlier than a full second order expansion.

This idea can be easily generalized to any functions of the form D(I(φ)). Note how-

ever, that in the general case, the Gauss-Newton approximation to the Hessian is

more complex. The weight matrix, Z, in the least squares case corresponds to ∂2D
∂I2 in

Equation 4.14.

It is therefore necessary to look closely at the matrix ∂2D
∂I2 . For the image registra-

tion problem, taken literally, it would be a symmetric matrix the size of the number

of pixels. Evaluating Equation 4.14 would require a summation of the outer products
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between the derivatives of every pixel with every other pixel. This is clearly unrealistic

to compute. However, for most image difference measures, an intuitive understanding

suggests that pixels with the same intensity are equivalent, as far as the measure,

D, is concerned. Therefore, this matrix should not need to be computed in its full

generality for most measures. In the following it is shown that for two commonly used

measures, NCC and MI, the calculation is indeed more tractable.

4.4.1 Normalized Correlation

Recall from Section 3.1.3 that normalized correlation NCC is appropriate for compar-

ing images where there is a linear relationship between the intensities in the fixed and

moving images. The DNCC measure is a ratio of two terms

DNCC =
−u
v

(4.15)

where

u =
∑
i

[
(Ifi
− Īf )(Imi

− Īm)
]
,

and

v =

[∑
i

[
(Ifi
− Īf )2

]∑
j

[
(Imj

− Īm)2
]] 1

2

.

where Īf and Īm are the mean intensities for the fixed and moving images, respectively.

The gradient is then

∂DNCC

∂φ
=

1

v2

(
u
∂v

∂Im
− v ∂u

∂Im

)
∂Im
∂φ

Temporarily definingA = u ∂v
∂Im

, B = v ∂u
∂Im

, and C = v2, the Hessian can be expressed

as:

∂2DNCC

∂φ2
=
∂Im
∂φ

T
(
C ∂A
∂Im

+B ∂C
∂Im
−A ∂C

∂Im
− C ∂B

∂Im

C2

)
∂Im
∂φ

+

1

v2

(
u
∂v

∂Im
− v ∂u

∂Im

)
∂2Im
∂φ2

(4.16)
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The second term of Equation 4.16 is equivalent to what is dropped in the Gauss-

Newton approximation for mean squared difference (Equation 4.5). For the same

reasons as before, this term can be assumed small and dropped. To complete the

details of the Hessian each of the parts of the first term must be considered.

Assuming that the mean values of the image, Īm, do not appreciably change as

the parameters change, the derivatives of u and v with respect to a particular pixel

in the moving image, Imi
, are:

∂u

∂Imi

= (Ifi
− Īf ),

and
∂v

∂Imi

=
1

v

∑
k

[
(Ifk
− Īf )2

]
(Imi

− Īm)

Letting F =
∑

k

[
(Ifk
− Īf )2

]
, and noting that it is a constant,

A =
u

v
· F · (Imi

− Īm),

and,

∂A

∂Imj

=
F

v
(Ifj
− Īf )(Imi

− Īm)− uF 2

v3
(Imj

− Īm)(Imi
− Īm) +

uF

v
δij,

where δij is an indicator function, equal to 1 if i = j and 0 otherwise. Continuing,

B = v · (Ifi
− Īf ),

∂B

∂Imj

=
F

v
· (Ifi

− Īf ) · (Imj
− Īm),

and,
∂C

∂Imj

= 2F · (Imj
− Īm)

Combining the terms and simplifying, Equation 4.17 is obtained for the Gauss-Newton

Hessian of DNCC , which will be referred to as HGN−2DNCC .
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HφDNCC ≈ HGN−2DNCC =

2 ·
∑

i

[
(Ifi
− Īf )2

]
v3

·
∑
i

[
(Ifi
− Īf ) · ∇φImi

]
·
∑
j

[
(Imj

− Īm) · ∇φImj

]T
−

3u ·
[∑

i

[
(Ifi
− Īf )2

]]2
v5

·
∑
i

[
(Imi

− Īm) · ∇φImi

]
·
∑
j

[
(Imj

− Īm) · ∇φImj

]T
+
u ·
∑

i

[
(Ifi
− Īf )2

]
v3

·
∑
i

[
∇φImi

· ∇φITmj

]
(4.17)

This Hessian is lengthy to write, but tractable to compute. The first two terms

(blue) of Equation 4.17 can be computed from summations over weighted gradients,

and the third term (red) is the weighted summation of the outer product of ∂Im

∂φ

with itself. Each of the first two terms is arguably very small since they include

summations of the form
∑

i(Ii − Ī) which should average to zero. This suggests that

these terms can be ignored without effect, which yields another approximation that

will be referred to as

HφDNCC ≈ HGN−1DNCC =
u ·
∑

i

[
(Ifi
− Īf )2

]
v3

·
∑
i

[
∇φImi

· ∇φITmj

]
(4.18)

Both approximations will be examined in the following experiments.

As in the case of MSD, these Gauss-Newton approximations can be tested on a

function that can be computed exactly. Normalized Correlation is intended to be used

when there are linear intensity differences between the functions, so to simulate that,

f(x) is changed to:

f(x) = 0.7 sin
√
x+ 200 + 1.15; (4.19)

and proceed as before. This new function is shown for five different positions of the

“warp” parameter, p, in Figure 4.11.

The results are shown visually in Figure 4.12a. A numerical examination over

the entire graphed range, using Equation 4.10 gives the result that the approx-

imate function based on the simple Gauss-Newton approximation to the Hessian

(HGN−1DNCC(φ), Equation 4.18) has an error of 0.51%, the approximate function
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p=151
f(x)
g(x)

p=175
f(x)
g(x)

p=200
f(x)
g(x)

p=225
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g(x)

Figure 4.11 The simple functions used for testing the NCC Gauss-
Newton approximation. The fixed and moving one-dimensional images
are shown for values of the parameter, p, ranging from 151 to 250. Correct
registration of the functions occurs at p = 200.

based on the full Gauss-Newton approximation to the Hessian (HGN−2DNCC(φ),

Equation 4.17) has an error of 0.88% and the full second order Taylor series ap-

proximation has an error of 0.97%. Obviously all three are very close approximations

to DNCC . It may seem counterintuitive that a shorter truncation of the Taylor series

gives more accurate results, but this simply means that there are third order terms

which tend to cancel the truncated terms. Over the same distance, approximating

the function using only the gradient yielded an error of 5.6% with Equation 4.10.

From this it can be concluded that the Gauss-Newton Hessian approximation forms

very nearly as good a local approximation to the function as the full Hessian and

can be used as input to Newton-Raphson algorithms. An even simpler approximation

(GN-1) made by dropping some small terms appears to be equally as good or better.

The values of DNCC were computed between the images shown in Figure 4.1a

and 4.1b along a line through the 2D rigid parameter space. The gradient, and each

of the two Gauss-Newton approximation were collected at the point shown and used to

approximate the function. The image difference measure and these approximations are

shown in Figure 4.12b. Note that the two approximations are nearly indistinguishable

from each other, and both approximate the real DNCC well.

To test the effectiveness of these Hessian approximations two simulated registration

experiments using the 2D TPS and 2D B-spline transforms were performed. The

sagittal brain image warped by the synthetic 2D deformation was used (Figures 4.1

and 4.4b). No scaling factor was used. Figure 4.13 graphically reports the results of

these registrations in terms of running time, mTRE, number of function evaluations

and failure rate. These were tested for statistical significance using the framework
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Figure 4.12 The actual function, DNCC , the full second order Tay-
lor series approximation, D2, the approximation based on the complete
Gauss-Newton Hessian approximation, DGN−2, the approximation based
on the simplified Gauss-Newton Hessian approximation, DGN−1, and a
linear approximation, D1, for Normalized Correlation. The calculated
case (left) shows the comparison to a full, exactly computed Taylor series.
The real case (right) shows the Gauss-Newton Hessian approximations for
a real image.

described in Section 3.2.1.

As the analysis suggested would be the case, no statistically significant difference

between the two approaches to approximating the Hessian was found. A Newton-

Raphson optimization using either of these Hessian approximations used significantly

fewer iterations than a gradient descent optimization. As there is no detectable differ-

ence between the two approaches, it is concluded that the simpler of the two should

be used. This approximation is used in all the following experiments that require a

Hessian. Note that in the B-spline case, the gradient descent method was faster than

the Newton method, despite requiring more iterations. This is due to the computa-

tional cost of computing the Hessian, an issue that will be discussed in more detail in

Section 4.6.1.
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Figure 4.13 Registration performance using a Newton-Raphson op-
timization technique with both approximate Hessian calculation meth-
ods for the NCC measure. Results are also compared against using
gradient descent (GD). The two Hessian approximations, HGN−1DNCC

and HGN−2DNCC , give nearly identical results, so the simpler one
HGN−1DNCC is preferred. (The mTRE is given in mm.)
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4.4.2 Mutual Information

As previously discussed in Section 3.1.4 mutual information measures the existence

of a statistical relationship between two signals, and is particularly useful for multi-

modality image registration.1 Recall that mutual information is a function of a joint

probability distribution, P , of the intensities in the images. In addition to the ex-

pression of Equation 3.6, (negative) mutual information can be expressed as a sum of

entropies, DMI = H(Pf,m)−H(Pf )−H(Pm), where H(Pi) is the Shannon entropy,

H(Pi) = −
∑

iPi logPi [61].

For brevity, the Gauss-Newton approximation for the joint entropy will be derived.

The approximate Hessian of MI can then be evaluated by adding up the Hessians

of its component entropies. The entropy of a probability distribution where each

element, Pk, is a function of the moving image, Im, which is in turn a function of

some parameters, φ, is given by,

H(φ) = −
∑
k

Pk(Im(φ)) log(Pk(Im(φ))), (4.20)

and its derivative is then,

∂H

∂φ
= −

∑
k

[
log(Pk)

∂Pk
∂Im

∂Im
∂φ

+ Pk
∂ log(Pk)

∂Im

∂Im
∂φ

]
(4.21)

∂H

∂φ
= −

∑
k

[
log(Pk)

∂Pk
∂Im

∂Im
∂φ

+
∂Pk
∂Im

∂Im
∂φ

]
(4.22)

Since the sum of the probability distribution, Pk, must be 1, the sum of the derivatives

of Pk must be zero, and therefore the second term disappears. Taking the second

derivative

∂2H(φ)

∂φ2
= −

∑
k

[
∂Im
∂φ

∂Pk
∂Im

1

Pk

∂Pk
∂Im

∂Im
∂φ

+

∂Im
∂φ

∂2Pk
∂I2

m

∂Im
∂φ

log(Pk) + log(Pk)
∂Pk
∂Im

∂2Im
∂φ2

] (4.23)

1To be consistent with the discussion of minimization, the negative mutual information is de-
scribed here.
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Both [185] and [70] approximate the Hessian by dropping the second (blue) and third

(red) terms of Equation 4.23. Adding the entropies for the joint and moving image

probability distributions, their approximation to the Hessian of MI is:

∂2DMI(φ)

∂φ2
≈ HTUDMI = −

∑
f,m

[
∂Im
∂φ

∂Pf,m
∂Im

1

Pf,m

∂Pk
∂Im

∂Im
∂φ

]
+
∑
m

[
∂Im
∂φ

∂Pm
∂Im

1

Pm

∂Pm
∂Im

∂Im
∂φ

] (4.24)

(Note that the fixed image intensity distribution may be considered fixed in the B-

spline Parzen windowed formulation.) This approximation will be called HTUDMI

since Thévenaz and Unser first proposed it [185, 186].

This second (blue) term of Equation 4.23 is actually quite large, and its importance

can be understood using the following argument. The entropy of the fixed image

can be considered to remain fixed, and the entropy of the moving image can be

considered to remain very nearly fixed, at least locally. Therefore the shape of the

mutual information cost function is almost completely determined by the shape of the

joint entropy function. Noting that an outer product of a matrix with itself is always

positive definite, and that since all the entries of P are less than one, and therefore

their logarithms are all negative, the first term in Equation 4.23 (black) is a negative

definite matrix, and the second term (blue) is positive definite. The negative mutual

information cost function, however, forms a non-convex funnel shape – i.e., its Hessian

must be saddle shaped (except possibly very close to the optimum). Therefore neither

of these terms alone can accurately describe the shape of the function. This is not

simply a problem of scaling, but of the reversal of curvature in at least one direction

if one of these terms is ignored.

It is argued in [70, 185] that this second term is unimportant because it disappears

when identical images are in exact registration. However, this argument is flawed.

Consider that for the entropy calculation, bins of the probability distribution which

contain zero contribute nothing to the total entropy, nor to its derivatives. They may

therefore be ignored. Then when two identical images are in perfect registration there

is thus an exact bin to bin match between the joint probability distribution, and the

moving image intensity probability distribution. In this situation, the entropy of the
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joint distribution cancels exactly with the entropy of the moving image distribution,

and so do all its derivatives. The Hessian would be a zero matrix. The MI function, in

this particular case, becomes a sharp point at perfect registration, and the derivatives

at the point are not well defined.

Fortunately, the derivative does not usually disappear at the minimum for MI

image registration problems. A number of factors, including the blurring caused by

the B-spline Parzen windows, differences in intensity distributions between the images

and noise in either image prevent the joint probability distribution from precisely

matching the moving image intensity distribution in practice. However, these factors

also prevent the second term from disappearing, so the argument still should not be

used.

The approximation that is truly equivalent to the one that is made in the squared

difference case is to drop only the third (red) term of Equation 4.23. Adding the

entropies of the joint and moving image intensities gives:

HGNDMI = −
∑
f,m

[
∂Im
∂φ

∂Pf,m
∂Im

1

Pf,m

∂Pf,m
∂Im

∂Im
∂φ

+
∂Im
∂φ

∂2Pf,m
∂I2

m

∂Im
∂φ

log(Pf,m)

]
+
∑
m

[
∂Im
∂φ

∂Pm
∂Im

1

Pm

∂Pm
∂Im

∂Im
∂φ

+
∂Im
∂φ

∂2Pm
∂I2

m

∂Im
∂φ

log(Pm)

]
(4.25)

The second and fourth terms (blue, these correspond to the blue second term in

Equation 4.23) are tractable, although somewhat difficult. Since Pf,m is not known

during the loop over pixels, the
∂Pf,m

∂Im
component of the second term must be kept,

and then reduced when P is known. For a transformation with ](φ) parameters,

this is an object of size |P | × ](φ) × (](φ) + 1) × 0.5 (note that it is symmetric,

so only a triangular matrix of terms are needed). For reasonably small numbers of

parameters this is feasible, although it does make the MI approximate Hessian more

computationally expensive than those for MSD and NCC.

As in the case of MSD, the MI Gauss-Newton Hessian approximation can be tested

on a function that can be exactly computed. MI is intended to be used when there is

a complex (i.e., non-linear) intensity relationship between the images, so to simulate
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that, f(x) is changed to:

f(x) = (sin
√
x+ 200)3; (4.26)

and proceed as before. This new function is shown for five different positions of the

“warp” parameter, p, in Figure 4.14.

p=151
f(x)
g(x)

p=175
f(x)
g(x)

p=200
f(x)
g(x)

p=225
f(x)
g(x)

p=250
f(x)
g(x)

Figure 4.14 The simple functions used for testing the MI Gauss-
Newton approximation. The fixed and moving one-dimensional images
are shown for values of the parameter, p, ranging from 151 to 250. Cor-
rect registration of the functions occurs at p = 200.

Both the Gauss-Newton approximation in Equation 4.25 and the one used in [70,

185], Equation 4.24 are tested. The results are shown visually in Figure 4.15a A

numerical examination, using Equation 4.10, gives the result that the approximations

using the Gauss-Newton approximate Hessian of Equation 4.25, HGNDMI , and the

full second order Taylor series have identical errors of 27.3%. While much larger than

the NCC or MSD cases, this simply indicates that the 3rd order and higher terms in

the function are quite large, and that very little is lost by making the Gauss-Newton

approximation. The approximation using the gradient only has an error of 38.2%,

but using HTUDMI has an approximation error of 548%.

The values of DMI were computed between the images shown in Figure 4.1a

and 4.1c along a line through the 2D rigid parameter space. The gradient, and each

of the two Gauss-Newton approximations were collected at the point shown and used

to approximate the function. The image difference measure and these approximations

are shown in Figure 4.15b. Note that the generalized Gauss-Newton approximation

(DGN , magenta) has positive curvature and approximates the MI function well. The

shorter approximation (DTU , red) has negative curvature and is a poor approximation

to the function.

As in the case of the NCC measure, to test the effectiveness of these Hessian

approximations two simulated registration experiments using the 2D TPS and 2D
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Figure 4.15 The actual function, DMI , and approximations using the
full Taylor series approximation, D2, generalized Gauss-Newton Hessian
approximation, DGN , the Thévenaz-Unser approximation to the Hessian,
DTU , and a linear approximation from the gradient, D1. The calculated
case (left) shows the comparison on a function whose Hessian can be cal-
culated exactly. The real case (right) shows the approximations generated
from a real image.

B-spline transforms were performed. The sagittal brain image warped by the syn-

thetic 2D deformation was used (Figures 4.1 and 4.4b). No scaling factor was used.

Figure 4.16 graphically reports the results of these registrations in terms of running

time, mTRE, number of function evaluations and failure rate. These were tested for

statistical significance using the framework described in Section 3.2.1.

There is a statistically significant difference in optimizer performance between

the two Hessian approximations. Many fewer iterations are required when using

the generalized Gauss-Newton approximation, HGNDMI . Note the timing results

carefully, however. Despite the fact that many fewer iterations were required with

the generalized Gauss-Newton Hessian, it was not efficient to use it in these cases

due to the computational cost of computing the Hessian. This issue is discussed more

thoroughly in Section 4.6.

Using the alternative shorter truncation, HTUDMI , the performance is not appre-

ciably different from simply using gradient descent. This shorter truncation confers

no detectable benefit on the optimization process. Therefore, it is concluded that the
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generalized Gauss-Newton approach,, HGNDMI , is the correct Hessian approximation

to use in Newton-Raphson optimizers and it will be used in all further experiments.
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Figure 4.16 Registration performance using a Newton-Raphson opti-
mization technique with both approximate Hessian calculation methods
for the MI measure. Results are also compared against using gradient
descent. The two Hessian approximations, HGNDMI and HTUDMI ,
give very different results. The shorter truncation of the Taylor se-
ries, HTUDMI , does not result in significantly different performance from
gradient descent. The longer, generalized Gauss-Newton approximation
HGNDMI is preferred. (The mTRE is given in mm.)

4.4.3 Summary

In this section, a generalization of the Gauss-Newton Hessian approximation for non

least squares functions has been derived. The generalization applies to any cost func-

tion that can be expressed as a composition of functions, D(I(φ)), where the inner

function I is a large dimensional vector. This approximate Hessian has been explic-

itly worked out for the NCC and MI cost functions, and shown to provide a local

approximation to the cost function very nearly as good as the full second order Tay-
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lor series. Image registration experiments confirm it is effective for Newton-Raphson

optimization in image registration problems.

Recall from the introduction to this chapter that solutions to two issues were

necessary before the performance of different optimization algorithms could be prop-

erly compared. The following section deals with the second of these issues, that of

parameter scaling.

4.5 Parameter Scaling

To get the best performance from an optimization algorithm, it is generally recom-

mended that the problem be “well-scaled” [59, 80, 85, 151, 192]. It is known that

parameter scaling is important in image registration (e.g., [26, 109, 194]), particularly

for gradient descent optimization, but methods of choosing these scale factors have

remained ad-hoc. This section examines what the effect of scaling is, and presents a

new method for choosing an optimal scale factor.

There are two major reasons why parameter scaling is important. First, scaling the

variables also affects the meaning of the stopping criteria. The stopping criteria are

commonly based on the change in the parameters, |φ(n)−φ(n−1)|, the change in the ob-

jective function, |D(φ(n))−D(φ(n−1))|, and or the gradient magnitude ||∇φD(φ(n))||.
If the problem is far more sensitive to one parameter than another, the final result

will be nearly completely determined by the performance in that one parameter. For

example, an optimization step of 0.1 pixels is fairly small and a registration algorithm

could probably safely terminate when it reaches this step size. On the other hand, a

step of 0.1 radians of rotation is quite large, and it would probably be premature to

terminate the algorithm at this step size. This can lead to erratic performance, where

the algorithm stops far too soon, or runs far too long depending on how well that one

parameter is resolved in a particular instance. As a guideline, then, scaling should

make the expected ranges of the parameters be approximately the same. In fact, Gill

et al. [85] recommends that all the parameter values should be approximately one.

If the natural expression of the problem does not meet these requirements, a linear

rescaling can be applied to obtain better performance.

Second, and more importantly, scaling the problem variables affects the direction
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of the gradient, which, not surprisingly, has a significant effect on gradient descent

type algorithms. A linear rescaling of the parameters, φ(θ) = S · θ, where S is a

positive definite scaling matrix, changes the optimization problem to be optimizing

over a new set of parameters, θ, and the gradient of the objective function D(θ)

becomes

∇θD(θ) = ∇θφ(θ) · ∇D(φ) = ST∇φD(φ) (4.27)

and the Hessian becomes

HθD(θ) = ∇θφ(θ) · HφD(φ) · ∇θφ(θ)T = ST · HφD(φ) · S (4.28)

A unit step in the gradient direction is now different,

∆φ = S∆θ = S
ST∇φD(φ)

||ST∇φD(φ)||
,

which has a very significant effect on the performance of pure gradient descent op-

timizers. The performance of gradient descent methods will improve, the lower the

condition number (the ratio of largest to smallest eigenvalues) of the Hessian be-

comes [151]. The search directions of quasi-Newton algorithms will also be affected

by scaling, although, as they build up their estimate of the Hessian, the effect will

gradually be reduced.

The Newton-Raphson step (Equation 3.13) remains unchanged, as the scaling

matrices cancel,

∆φ = S∆θ = S
[
ST · HφD(φ) · S

]−1
ST∇φD(φ) (4.29)

= SS−1 · HφD(φ)−1 · ST−1

ST∇φD(φ) (4.30)

= HφD(φ)−1 · ∇φD(φ). (4.31)

However, they are not entirely immune to the effect of parameter scaling. For trust-

region methods the shape of the trust-region is changed by the scaling, and Conn

et al. [59] emphasize the importance of scaling for good performance. A trust-region

with inappropriate scaling will lead to the internal model that is formed being trusted

too well in some directions, and not well enough in others. At best, this will lead
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to slow convergence while at worst it may cause algorithm failure [59]. The effect on

line searches is mainly to change the size of the starting steps along the line which

are used to bracket the minimum. In image registration problems, this can lead to

the optimizer jumping completely outside the quasiconvex range of transformations

in the first few steps, which usually leads to algorithm failure.

For practical reasons diagonal scaling matrices are generally used, and the re-

mainder of the discussion will be restricted to diagonal matrices. A diagonal S scales

each parameter independently, rather than linearly combining them. This is efficient

in both time and space, and also makes the scaled parameters easier to understand

intuitively.

4.5.1 An Automatic Method For Scaling

Given that there are numerous reasons why proper scaling of an optimization problem

is desirable, what characteristics determine a good scaling? The technical considera-

tions described in the previous section indicate that the scaling should: (1) reduce the

condition number of the Hessian, and (2) somehow make equivalent the accuracies of

different parameters. Ideally, it should be possible to determine the scaling by only

inspecting the fixed image. During the image registration process, the fixed image

is constant, but the moving image is changing. If the scaling is dependent on the

moving image it might have to be changed every iteration. Furthermore, many prac-

tical registration problems have the form of matching many data images to a common

reference image. A scaling method that can be computed from the reference image

will be easier to apply in this situation.

To address the first criterion, consider that the need for controlling the spectrum

or condition number of a matrix arises frequently in the solution of linear systems,

i.e., Ax = b, and is usually addressed through preconditioning [16]. That is, both

sides of the equation can be multiplied by a preconditioning matrix, S. If well chosen,

this matrix will improve the spectral properties of A, rendering the solution much

easier [16]. That is, instead of solving,

Ax = b, (4.32)
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one solves,

SAx = Sb, (4.33)

If the preconditioner(s) can be chosen so that the resulting linear system is so much

easier to solve that the cost savings is greater than the cost of computing and using

the preconditioner, then this will be a more efficient way to solve the system [16]. The

Newton-Raphson step involves the solution of just such a linear system. Applying a

scaling to each parameter is equivalent to preconditioning the Hessian with a diagonal

matrix. Therefore, a good diagonal preconditioner for the Hessian may provide a good

scaling for the image registration problem.

Consider the approximate Hessians of each of the image difference measures dis-

cussed in this thesis, MSD (Equation 4.5), NCC (Equation 4.17) and MI (Equa-

tion 4.25). Each of their Hessians has an important term, T , of the form

T = γ
∂Im
∂φ

T ∂Im
∂φ

(4.34)

where γ is an arbitrary positive scalar multiplier. For MSD and NCC this term is

clearly the dominant term. For MI, it is not dominant, but it is the main positive

definite component. This means that this term is responsible for the largest eigenvalue

of the Hessian. The MI image difference measure forms a funnel shape around the

minimum (Fig. 4.15). Its curvature is negative in a radial direction from the minimum

and positive orthogonal to that. It is this positive curvature – which must come from

the positive definite term – that primarily controls the behavior of the optimizer.

Therefore, a preconditioner for matrices of this form should provide a good set of

scaling factors.

Dennis and Wolkowicz [68] showed that the optimal diagonal preconditioner for

matrices of the form ATA (such as the term T ) is a diagonal matrix with terms equal

to

Sii =
1√∑
jA

2
ij

Each Sii is the reciprocal square root of the corresponding diagonal element in the

matrix ATA. This is also known as the Jacobi preconditioner [16].

However, the term T in Equation 4.34 is a function of the moving image, and for
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practical reasons, it is desirable to avoid using the moving image to derive the scales.

Note that each diagonal element of T is a summation of squared terms

Tii = γ
∑
p

[∑
d

∂Imp(W )

∂Wd

∂Wd(xp,φ)

∂φi

]2

(4.35)

where p indexes all the pixels, and d indexes the dimensions of the image space.

Without needing to know the image itself, suppose that the image derivatives are

evenly spatially distributed throughout the image with some average value α. Then

this term becomes

Tii = γ
∑
p

[∑
d

α
∂W (x,φ)

∂φi

]2

= α2γ
∑
p

[∑
d

∂Wd(xp,φ)

∂φi

]2

(4.36)

The global factor, α2γ, can be ignored, as scalar multipliers do not affect the condition

number, and a Jacobi preconditioner for T can be computed as

Sii =
1√∑

p

∑
d
∂Wd(xp,φ)

∂φi

∂Wd(xp,φ)

∂φi

. (4.37)

Since only a very basic assumption about the moving image has been made, and

no actual moving image components are used in the calculation, this scaling matrix

can be computed using only the geometry of the problem. In other words, only the

Jacobian matrix of the transformation and the coordinate lattice of the pixels of the

fixed image are required.

The preconditioning properties of this matrix should reduce the condition num-

ber, but recall that this was not the only criterion for a good set of scaling factors.

This scaling matrix also addresses the second criterion. Consider that
∑

d
∂W
∂φp

∂W
∂φp

approximates the square of the distance moved by a pixel under a shift of one unit

in the transformation parameters. Thus each element of Sp is the reciprocal of the

root mean square distance moved by a pixel under a unit change in that parameter.

Scaling by this factor thus makes the parameters roughly equivalent in terms of the

average motion they induce on pixels in the image.

In cases where only certain areas of the fixed image are relevant – such as when
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the moving image is smaller, when large parts are masked out, or when there are large

blank areas – then treating all pixels equally may not be appropriate. In such cases,

the assumption made earlier that image gradients are evenly distributed is false. A

more reasonable approach is in these cases would be to mask out the unused areas,

and compute the scale factors using the pixels that remain.

Scaling the parameters by the matrix, S, should improve optimization performance

so long as it effectively preconditions the Hessian by reducing its condition number.

This provides a means of determining when this scaling method can be expected to

work well, and when it may not. In Figure 4.17, the Hessians for the case of registering

the image in Figure 4.1 with itself have been computed. The condition number of each

Hessian has been determined both before and after scaling by this matrix computed

for the problem. In all cases the condition number of the Hessian is improved by a

diagonal scaling. The improvement is very dramatic for the matrix based transforms.

For the thin plate spline transform, the condition number was not overly large to start

with, and is not changed much by this scaling. The scaling does not have much effect

in this case because the Hessian is very dense. The Hessian of the B-spline transform

is extremely sparse. Its condition number both before and after scaling is extremely

large, which indicates the matrix is nearly singular. Based on these results, scaling

with this factor can be expected to be particularly important for the matrix based

transforms, and less important, although still having some effect, on the deformable

transforms.

4.5.2 Testing the Scale Factors

To test the effectiveness of this set of parameter scaling factors it is necessary to

compare it against other possible scaling factors. A constant multiplier has no effect,

so to compare against other factors the relative ratios between elements of S must

be changed. In other words, the ratios Sii

Sjj
must be changed. To do this, alternate
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Number of Parameters
3 6 8 12 40 128

Hessian and condition number before scaling

4886 4504 3.23× 108 9582 264 7.64×1034

Hessian and condition number after scaling

2.27 6.92 15.6 12.5 32.5 3.73×1019

a) 2D rigid b) 3D rigid c) 2D homog. d) 3D affine e) TPS f) B-spline

Figure 4.17 These images show the Hessians and their condition num-
bers for various image transformations both before and after scaling with
the matrix, S. The Hessian values have been logarithmically scaled to fit
in the range of image intensities. Note how the condition numbers have
been reduced significantly by the parameter scaling. This appears as a
stronger, and more even, diagonal components after scaling for the matrix
based transforms (a-d). The density of the off-diagonal elements in the
TPS transform (e), and the near singularity of the B-spline Hessian (f)
reduce the effectiveness of scaling for these cases. The intensities of the
pre and post scaling Hessian images are scaled differently and should not
be considered comparable.
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scaling matrices are defined using the following formula:

ˆS(f) =


Si(1− f) + f if f < 0 and Si ≥ 1

1/
(

1
Si

(1− f) + f
)

if f < 0 and Si < 1

Si · 1
1+f

+ f
1+f

if f ≥ 0 and Si ≥ 1

1/
(

1
Si
· 1

1+f
+ f

1+f

)
if f ≥ 0 and Si < 1

(4.38)

Here the Si are the scale factors. This formula has the effect of altering the ratios

between elements of a set of numbers, as shown in Table 4.5. For these experiments

f = ±9 was used, which closely approximates multiplying or dividing the larger scale

numbers by 10. In the following, the scale factors computed with Equation 4.37 will

be referred to as case x1, those where f = 9 as case x10, and those where f = −9 as

case x0.1. The case of not using any scale factor at all (i.e., S is the identity matrix)is

also tested, and is referred to as case NSCL.

Case f Ŝ
x10 -9 9991 991 91 1 0.011 0.001 0.0001
x1 0 1000 100 10 1 0.1 0.01 0.001

x0.1 9 100.9 10.9 1.9 1 0.53 0.092 0.0099

NSCL 1 1 1 1 1 1 1 1

Table 4.5 Effect of different parameters f on a set of scale factors. The
parameter f changes the ratios between elements of the scaling matrix
S. The use of f = ±9 corresponds to approximately multiplying and
dividing by 10 for the larger elements of S. The NSCL case is to use no
parameter scaling, i.e., Sii = 1.

All the synthetic registration problems were tested using all four scaling cases

(x10,x1,x0.1,NSCL) for three image difference measures (MSD, NCC and MI). Re-

sults for all three measures were extremely similar, and lead to identical conclusions,

so only the results for the MI measure are presented here. Figure 4.18 shows the re-

sults of the registrations with the matrix-based transformations (i.e., 2D and 3D rigid

transformations, 2D homographies and 3D affine transforms). For each of the matrix

based transformations investigated, all five optimizers being considered were applied.

(The optimizers are: downhill simplex (DS), Powell’s (P), gradient descent (GD), lim-
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ited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) and Newton-Raphson (N).)

Note that in all the graphs, lower numbers indicate better performance. Each case

(transform/optimizer) is represented by four bars. The bars are, in order from left to

right, cases x10, x1 (the optimal scaling), x0.1 and NSCL. Therefore, a roughly “∪”

shaped graph indicates better performance using the scaling factors of Equation 4.37,

while a “∩” shaped graph indicates poorer performance with these scaling factors.

The effect of the scaling is most visible in the failure rate graph (bottom row, Fig-

ure 4.18). For all algorithms if no scaling factor is used, the algorithms are extremely

unreliable. (Recall that the definition of failure is completing registration further

than 5 units away from the correct position in mTRE, or aborting in an error state.)

Between scaling factors x10, x1 and x0.1 for all algorithms except Powell’s, the use of

the scaling factor given by Equation 4.37 (case x1) yields strongly better results. All

of the other performance criteria also deteriorate when scaling factors other than x1

are used, but the effect is not as striking. One reason that the effect is diminished in

the other graphs is that failed runs are rejected when these statistics are computed.

The gradient descent algorithm is the most sensitive to the problem scaling, which

is not surprising since its search direction is directly affected by the parameter scaling.

The Newton-Raphson and downhill simplex algorithms are somewhat sensitive, while

the BFGS and Powell method are the least. The greater robustness of the BFGS and

Powell algorithms may be explained by the fact that they use line-searches. Scaling

affects the line search in two ways. A poorly scaled problem may cause the optimizer

to jump out of the capture range of the minimum on its first few steps, or the optimizer

may stop too early due to the misinterpretation of the stopping criteria. If these issues

are avoided, the line search will probably complete successfully. Overall, the results

are unequivocal. Algorithm performance for optimization of matrix based transforms

is significantly improved by using the scaling factors computed by Equation 4.37.

The running time and number of evaluations required for the registrations with

deformable transformations (i.e., the 2D and 3D thin plate splines and B-splines) are

shown in Figure 4.19. The computational cost of using downhill simplex or Powell’s

algorithm on these transformations, and that of using the Newton-Raphson algorithm

on the largest dimensional case, was too high, so these cases were not examined. Again

results for all the image difference measures are extremely similar, so only those for
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Figure 4.18 Comparison of registration results for transforms with dif-
ferent numbers of parameters using the mutual information cost function.
The optimizers are identified as DS – downhill simplex, P – Powell’s,
GD – gradient descent, BFGS – Broyden-Fletcher-Goldfarb-Shanno, N
– Newton-Raphson. For each optimizer, the bars represent, from left to
right, the result using the scale factors x10, x1, x0.1 and NSCL. Case x1,
the optimal scale factor, is identified in red. If the results of the other
cases differ in a statistically significant way from case x1 they are shown
in black. Ambiguous results (see Section 3.2.1) are shown with black
outline, and results that are not significantly different from case x1 are
shown in gray. The datasets used were: 2D Rigid – Sagittal Brain Slice;
3D Rigid and Affine – Brainweb; 2D Homography – Agra Fort. mTRE
is in mm for all cases except the homography, where it is in pixels. Note
that the vertical scale is not the same in all cases.
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Figure 4.19 Comparison of registration results for different scale fac-
tors for transforms with different numbers of parameters using the
mutual information cost function. The optimizers are identified as
GD –gradient descent, BFGS – Broyden-Fletcher-Goldfarb-Shanno, N –
Newton-Raphson. For each optimizer, the bars represent, from left to
right, the result using the scale factors x10, x1, x0.1 and NSCL. Case x1,
the optimal scale factor, is identified in red. If the results of the other
cases differ in a statistically significant way from case x1 they are shown
in black. Ambiguous results (see Section 3.2.1) are shown with black out-
line, and results that are not significantly different from case x1 are shown
in gray. The datasets used were: 2D TPS and B-spline – Sagittal Brain
Slice; 3D TPS and B-spline Deformable Phantom. Note that the vertical
scale is not the same in all cases.
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mutual information are shown. As the effect on the Hessians shown in Figure 4.17

suggested, the effect of scaling on the deformable transformations is much more subtle

than in the matrix transform case. The results suggest that the gradient descent

optimization is somewhat slower for the x0.1 and NSCL case. Many differences are

not statistically significant, however, so it is difficult to draw a firm conclusion. The

case of the 2D B-spline registrations with the Newton-Raphson algorithm shows a

large, statistically significant increase in time required for the x0.1 case, but as the

rest do not show significant differences, this may be anomalous.

The accuracy results for these registrations are reported as comparisons of the

distributions of errors of points in a 50 × 50 grid across the image. The differences

between the error distributions can best be described as subtle. One graph which

typifies the overall results is shown in Figure 4.20. The remainder have been placed

in Appendix D.
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Figure 4.20 Distributions of errors remaining after registration of the
deformed Sagittal Brain Image using the 2D B-spline transform with the
gradient descent optimizer. The image difference measure used was mu-
tual information. This result is selected as being typical of the results of
this experiment. The graph shows the distribution of errors over a 50×50
grid of points in the image extent. Point errors for all 25 runs have been
combined into one histogram for each set of scale factors. Vertical lines
show the median error. With all scale factors, reasonably successful reg-
istration has been achieved, as shown by the distinct leftward shift in the
distribution. Case x0.1 produces a slightly, but statistically significantly
smaller median error.
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From a visual inspection of these graphs and the registration results, it is difficult

if not impossible to draw a conclusion about the effectiveness of the scaling factors.

However, when a statistical testing method is applied, a pattern does emerge. The

distributions of errors can be checked to see if they have a statistically significant

difference using a rank sum test (see Section 3.2.2). If a significant difference exists,

the median error is compared and the configuration with the lowest median error

is considered superior. Using this comparison technique, the scaling factors can be

ranked in the following order: x0.1, x1, NSCL and x10. This ranking was consistent

across optimizer and image difference measure. To be clear this does not mean that

case x0.1 had significantly lower median error in every case, but in a majority of cases.

In certain cases, it was noted that the registration made a small proportion of

the point error shift to the right. That means that the error on these points actually

increased as a result of the registration. This appeared to affect mainly points on the

very edge of the image, and the effect appeared to be strongest in the case of x10,

then x1, x0.1 and smallest for no scale factor. Using the scaling factors appears to

make certain parts of the image register more accurately and certain other parts less

accurately.

4.5.3 Experiments on Realistic Data

To confirm these results on realistic data, 2D and 3D rigid registrations were per-

formed using the Axial Brain Slices and Vertebra datasets described previously. These

datasets are multimodal, so only mutual information was used to register them. Re-

sults are shown in Figure 4.21. As in the simulated registration cases, the failure rate

is most affected by the scaling factor. The other criteria, running time, mTRE and

number of evaluations are, for nearly all cases, significantly better when using the

scaling factors of case x1. The exception is Powell’s algorithm, which runs a small

but significant amount faster for case x10. However, its mTRE and failure rate are

slightly worse for this case.
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Figure 4.21 Comparison of registration results for realistic registra-
tion problems with different scale factors. Due to its poor performance
the NSCL case was not used for these experiments. The optimizers are
identified as DS – downhill simplex, P – Powell’s, GD – gradient descent,
BFGS – Broyden-Fletcher-Goldfarb-Shanno, N – Newton-Raphson. For
each optimizer, the bars represent, from left to right, the result using
the scale factors x10, x1, and x0.1. Case x1, the optimal scale factor, is
identified in red. If the results of the other cases differ in a statistically
significant way from case x1 they are shown in black. Ambiguous results
(see Section 3.2.1) are shown with black outline, and results that are not
significantly different from case x1 are shown in gray. mTRE is in mm
for all cases. mTRE is analyzed separately for the deformable transform
case, and failure rate does not apply.

The deformable phantom datasets 4.7 were registered using the MSD cost function
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as they are of the same modality. Both the 3D TPS and 3D B-spline transformations

were used. The timing results for the registration of the deformable phantom objects

show an interesting pattern (Figure 4.21). The gradient descent method runs signifi-

cantly slower for case x0.1, while the BFGS method runs significantly faster. This is

correlated with improved accuracy performance in this case.

For this dataset, there is no gold standard transformation to compare to. However,

a comparison for accuracy can be performed using the distances between points in

the segmented mesh representation of the balloon, as described in Section 4.2.4. The

distribution of these errors can be compared as it was for the previous experiments,

and it is found that, similar to the synthetic registration cases, case x0.1 gives better

overall performance. This means that using the scaling factors of case x0.1 for the

BFGS method yields a significant improvement in both speed and accuracy for that

optimizer. Figure 4.22 shows one example which typifies the results. The remaining

graphs have been placed in Appendix D.

4.5.4 Discussion

The testing of the parameter scaling factors has yielded unequivocal results on the

matrix based transforms. All optimizers perform as well or better when using the

scaling factor defined by Equation 4.37, i.e., case x1. In the following experiments,

these scale factors will be used. For the deformable transformations, the effect of

parameter scaling is quite subtle. This is consistent with the limited improvement to

the Hessian condition number in these cases shown previously. It was found using a set

of scaling factors with a less extreme range than the ones calculated by Equation 4.37

– specifically those of case x0.1 – gave a small, but consistent improvement in median

accuracy. Accordingly, the scaling factors of case x0.1 will be used for the following

deformable registration experiments.

It was not possible to exactly identify the cause of the better performance of case

x0.1. By checking the effect of this set of scale factors on the Hessian it was ascertained

that it was not due to it being a better preconditioner. The scale factors of case x0.1

do not improve the condition numbers of the Hessians as much as the optimal pre-

conditioner, case x1. It is conjectured that the observed effect is due to the somewhat

different nature of these registration problems as compared to the matrix transform
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Figure 4.22 Distributions of errors remaining after registration of the
Deformable Phantom, Case partially inflated to fully inflated using the
3D B-spline transform with the gradient descent optimizer. The image
difference measure used was MSD. This result is selected as being typical
of the results of this experiment. The graph shows the distribution of
distances between points in a warped mesh of the balloon part of the
phantom, and the mesh of the balloon created from the target volume.
Vertical lines show the median error. With all scale factors, reasonably
successful registration has been achieved, as shown by the distinct leftward
shift in the distribution. Case x0.1 produces a slightly, but statistically
significantly smaller median error.

case. The parameters of deformable transforms naturally affect different parts of the

image unequally. The scaling factors become very small (i.e., << 1), making the RMS

effect of a unit shift equal over the entire image. However, this does not conform to

the nature of the problem. For instance, the parameters for the padding control points

of the B-splines have very small effects on the image. Their scale factors become very

small, allowing these parameters to show very large variations – deviations equating

to thousands of pixels of deformation – during the optimization. The net deformation

does not seem to be seriously affected, but deformations this large are very unrealistic.

This is also consistent with the observation that a small proportion of points seem

to be made worse by the registration process. The best solution may be to apply a

regularization term, to keep these terms within reasonable bounds for the problem.

Now that the approximate Hessian calculation, and the selection of the scale factors

has been addressed, it is possible to configure each optimization algorithm well for each
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problem. This allows a fair comparison between them to be performed. Optimizer

performance is investigated in the following section.

4.6 Optimizer Selection

The optimization algorithm plays a key role in performing efficient and reliable image

registration, and selecting the right one can greatly improve performance. However,

there is a lack of reasoned guidelines for selecting optimizers, with previous studies

focusing on very specific registration problems. When selecting an optimizer, there is

a tradeoff between the input that is required, and the number of function evaluations

that the optimizer will require to converge. While optimizers that take more input

information can be expected to converge faster in terms of number of iterations,

producing that additional information (i.e., gradients, Hessians) has a cost. It may

be that computing the additional information takes so much time that nothing is

gained by having fewer iterations.

It is also important to consider how fast convergence can take place when the

optimizer is started near the optimum. This issue becomes particularly important in

a multiresolution context, where for the second and subsequent levels, it is reasonable

to assume that the optimization will be started fairly close to the true optimum. An

optimization algorithm that cannot stop quickly when appropriate may waste a lot

of computation in this case. The importance of this issue for optimizer selection was

discussed at length by Maes et al. [137] where it has a strong influence on the final

recommendations of the paper.

For image registration problems, the cost function being evaluated is computation-

ally expensive. As a result, the time required to perform the optimization is almost

completely determined by the number of function evaluations that it will require.

This premise lies behind much of the work in this chapter, and to justify it, consider

the following simple example.

If the Newton-Raphson algorithm was implemented naively, it would require the

matrix inversion of the Hessian. This would be the most computationally intense part

of the optimizer internal steps, and actually inverting the matrix would be a particu-

larly inefficient approach to solving for the Newton-Raphson step. Nevertheless, a test
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of the speed of inverting random matrices using the ITK library on a 3.2Ghz Pentium

IV revealed that inverting 100×100 matrices required an average of 0.04 seconds, and

inverting 250 × 250 matrices an average of 0.66 seconds. Note (see also Figure 4.26)

that computing the Hessian even on a very small image with 100 parameters required

approximately 10 seconds, and with 180 parameters required over 20 seconds, on the

same machine. The matrix inversion or other steps involved in the optimizers internal

processing are simply not the computational bottleneck in the process.

4.6.1 Estimating Optimizer Performance

Estimating the number of function evaluations required by an algorithm is an essential

step in selecting the right one. Unfortunately, estimating how many function evalua-

tions will be required for successful completion of a particular optimization algorithm

is not an easy task. The convergence of optimization algorithms has been heavily

studied [80, 85, 131, 151, 158, 192], but these results do not lead directly to an answer

for this question. Nevertheless, although exact bounds are not possible, this section

attempts to derive reasonable guesses for the average complexity of carrying out the

optimization.

Convergence of optimization algorithms is described in two ways in the litera-

ture [59, 151, 192]. The first way is that, for certain algorithms, the number of steps

required to converge to an exact solution on a quadratic function can be determined.

The second way is to describe the rate of convergence of the sequence of iterates gen-

erated by the algorithm. For example, the rate of convergence is described as Q-linear

if [59]

∃N |∀n > N : ||φ(n+1) − φopt|| ≤ c||φ(n) − φopt||; 0 < c < 1 (4.39)

The property of linear convergence can be used to establish a rough estimate of the

number of steps required for an algorithm to complete. It is easy to see that while this

property holds the number of steps required to reduce the error by a ratio, r, is logc(r).

For the algorithm to complete, the residual error must drop to some acceptable level.

If it is assumed that the error in the parameters is roughly equal in each parameter,

then the starting error increases as the square root of the number of parameters.
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Therefore, the number of steps required for an algorithm with the linear convergence

property to complete can be estimated to be O(log(](φ))), where ](φ) is the number

of parameters.

Both of these types of convergence estimates do not permit any solid predictions

about how an optimizer will perform in practice. The first type of convergence result

does not directly apply because the functions of interest are rarely quadratic. If the

cost function is analytic then it may be considered quadratic in a close vicinity of

the minimum. However exactly how close is necessary is difficult to say. The second

type of convergence result is asymptotic in nature – the property is only guaranteed

to hold for large enough N . It is entirely possible that the N where it holds is far

larger than any number of iterations that will be reached in a realistic problem.

However, bearing these caveats in mind, it is possible to use this information about

the convergence properties of each algorithm to make some approximate guesses about

how many evaluations will be required for each algorithm to complete. The notation

Õ(n) will be used to denote these guesses, and to indicate that they do not have

the formal bounding property of the O(n) notation. In what follows, let N = ](φ),

i.e., the number of parameters.

The Nelder-Mead Downhill Simplex [149] algorithm requires only function val-

ues as input. It is not even guaranteed to converge, although in practice it usually

does [131]. Its rate of convergence is therefore difficult to define, although it is reported

to be “slow” [131]. Let the estimate be that it is somewhat worse than Powell’s algo-

rithm (described below), requiring Õ(N q); q > 1 iterations. Note that each iteration

of downhill simplex may require O(N) function evaluations, as the shrink operation

requires N + 3 function evaluations.

Powell’s method [156] also only requires function values as input and is widely

known for converging in N steps on a N -dimensional quadratic [131, 192]. Thus it

can be directly estimated that it will require Õ(N) iterations to converge. However

like the downhill simplex method it should be noted that each of those N iterations

contains within it N line searches [192], so the number of function evaluations required

is Õ(N2).

Gradient descent, as its name implies, requires both function values and gradients

as input. Gradient descent methods simply take steps in the direction opposite the
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gradient. The step size may be chosen by a line search, or, as is more common,

some sort of heuristic is used to adapt the step size [59, 192]. The convergence

rate of gradient descent is linear, that is, it follows Equation 4.39 [176]. Based on the

reasoning about Equation 4.39, the convergence can be estimated to require Õ(log(N))

steps.

Quasi-Newton methods require both function values and gradients as input. At

each step, they examine the change in the gradient and update an internal model of the

function Hessian. This internal Hessian is used to compute the next step according to

the Newton step. The first few steps of quasi-Newton methods are therefore a lot like

gradient descent, but their performance approaches that of a Newton-Raphson type

method as they continue. Their rate of convergence is better than linear [59, 192].

The number of steps required will be estimated as Õ(log(N)r), where 0 < r ≤ 1

Newton-Raphson methods require function values, gradients and Hessians as in-

put, but will converge in a single step on a quadratic function. The number of steps

required to converge can thus be estimated as Õ(1).

If started exactly at the optimum, neither the downhill simplex, nor Powell’s

method can identify the point as a minimum until they have gone through their full

cycle. That is, the downhill simplex must shrink its simplex down to its minimum

size, and Powell’s method must perform a full battery of line searches. The remaining

methods, however, have access to the gradient information. Because the gradient is

zero at a minimum, these methods can stop after a single step if needed. As previously

mentioned, this is an important issue in a multiresolution approach.

In general, the optimization algorithms that use more input information (i.e., gra-

dients, Hessians) converge faster. However, there is a tradeoff here, because that

additional information has to be computed. The complexity of evaluating the image

difference measure, its gradient or its Hessian is dependent on the transform being

used. For an N -dimensional transformation, evaluating the cost function requires

O(N) operations per pixel. (It might first appear that this should be O(1), but it is

important to consider that the calculation must presumably access each parameter at

least once.) The complexity of calculating of the difference measure gradient can vary.

For the transformations used in this work, it ranges between O(N) and O(N2) per

pixel. Even in the case where the function evaluation has the same complexity with
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or without the gradient, the gradient calculation can be expected to take longer. The

calculation of the Hessian requires the calculation of N2 elements so it is necessarily

an O(N2) per pixel operation.

All these estimated complexities, are summarized in Table 4.6. From the preced-

ing discussion it is clear that these must be taken as estimates, not as true bounds,

but nevertheless several useful deductions can be made. As the number of parame-

ters increases, the downhill simplex and Powell methods will prove to be the slowest,

even though they require the least computationally expensive input. It can also be ex-

pected that a quasi-Newton method should outperform an equivalent gradient descent

method as the number of parameters increases. Finally, whether a Newton-Raphson

method will outperform a gradient descent or quasi-Newton method will depend on

the complexity of evaluating the gradient. For transformations where the evaluation

of the gradient is an O(N2) operation, Newton-Raphson methods may prove to be

more competitive. For transformations where the evaluation of the gradient is an

O(N) operation, there may be a set of parameter sizes where the Newton-Raphson

method is competitive, but as N increases, the cost of computing the Hessian will

quickly become prohibitive. The following section investigates these complexities on

simple problems.

Algorithm Minimum
Evals

Steps
Required

Evals
Per Step

Cost per
Eval

Total
Complexity

Simplex O(N) O(Np); p > 1 O(N) O(NP ) O(N qP ); q > 3

Powell O(N) O(N) O(N) O(NP ) O(N3P )

Grad.
Descent

1 O(log(N)) O(1) O(NP )–
O(N2P )

O(N log(N)P )–
O(N2 log(N)P )

Quasi-
Newton

1 O(log(N)r);
0 < r ≤ 1

O(1) O(NP )–
O(N2P )

O(N log(N)rP )–
O(N2 log(N)rP )
0 < r < 1

Newton-
Raphson

1 O(1) O(1) O(N2P ) O(N2P )

Table 4.6 Computational tradeoffs in different optimization algorithms,
here N is the number of parameters, and P is the number of pixels.
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4.6.2 Exploring Optimizer Efficiency

The analysis in Table 4.6 is first investigated by performing a number of optimizations

using different numbers of parameters on a simple cost function. For this test, a series

of 2D thin plate spline transforms with progressively more points were defined. (This

method is described in Appendix C.) These give rise to a series of transforms with

progressively more parameters. The parameters of these transforms were perturbed

with uniformly distributed noise with a range of ±1.5mm. This range was chosen

so that there was no danger of folds or tears occurring in the transform. The cost

function was a Cauchy robust distance measure [179] on the positions of a grid of

points evenly spaced over the image extent. This distance measure (see Figure 4.23)

was chosen to avoid using a perfectly quadratic measure. It has negative curvature

over part of its range, similar to MI.
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Figure 4.23 The Cauchy robust cost function [179]. The figure on the
left illustrates the shape of the Cauchy robust cost function (Equation on
right). Note that the shape is quasiconvex, but not convex, like the MI
image difference measure. Here i indexes the grid of points, and ri(φ) is
the distance moved by the transformed point. The parameter, b, was set
to 0.1 for this test.

The number of evaluations and running time required for each optimizer to con-

verge to a solution was recorded, and the results are shown in Figure 4.24. The

amount of evaluations, and therefore also of time, required for the downhill simplex

and Powell methods grows so rapidly that it is difficult to tell if it is linear or quadratic

in nature. In any case, these optimizers rapidly become impractical and are probably

completely out of the question for transforms with much more than 10 parameters.
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Figure 4.24 Number of evaluations and time required for optimizing a
simple cost function as the number of parameters changes. a) Number of
evaluations required for convergence for various numbers of parameters,
similar starting positions. b) Time required for convergence.
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The number of iterations for gradient descent and the quasi-Newton method have

a very apparent upward curve. This is in contrast to the anticipated rate according

to Table 4.6 which would have been logarithmic. This theoretical rate of convergence,

however, only holds close to the minimum. It is apparent from Figure 4.24 that

even this simple problem, which does not start too far from the minimum, is still

outside the region where the theoretical rate holds. Of these two methods the gradient

descent method clearly requires more iterations than the BFGS method. The Newton-

Raphson method requires very few iterations to converge, except for the very last

case where its performance has suddenly started to degrade. Examination of the time

graph (Figure 4.24b), however, shows that the time required for this method is rising

noticeably toward the end. This is due to the greater cost of computing the Hessian,

indicating that the cost per iteration must also be considered to get a true picture.

To evaluate the rate of growth of the per-iteration cost, the MSD measure was

evaluated between the image in Figure 4.1 and a warped version of itself. The average

time required to perform 10 evaluations of the function alone, with its gradient, or

with its gradient and Hessian was recorded at different number of parameters. The
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measurements were taken on each of the TPS transforms described above and the

timing results are shown in Figure 4.26a. A sequence of B-spline transformations

with an increasing number of parameters was also defined. These were defined by

successively increasing each size of the dimension of the B-spline grid as shown in

Figure 4.25. The timing results for similar evaluations using the B-spline transforms

are shown in Figure 4.26b.

IMAGE

¤ ¤ ¤ ¤ ¤¤

¤ ¤ ¤ ¤ ¤¤

¤ ¤ ¤ ¤ ¤¤

¤ ¤ ¤ ¤ ¤¤

¤ ¤ ¤ ¤ ¤¤

¤ ¤ ¤ ¤ ¤¤

¤ ¤ ¤ ¤ ¤¤

(a) 3x4 grid (N = 84)

IMAGE
¤ ¤ ¤ ¤ ¤ ¤¤
¤ ¤ ¤ ¤ ¤ ¤¤

¤ ¤ ¤ ¤ ¤ ¤¤
¤ ¤ ¤ ¤ ¤ ¤¤
¤ ¤ ¤ ¤ ¤ ¤¤
¤ ¤ ¤ ¤ ¤ ¤¤
¤ ¤ ¤ ¤ ¤ ¤¤
¤ ¤ ¤ ¤ ¤ ¤¤

(b) 4x5 grid (N = 112)

IMAGE
¤ ¤ ¤ ¤ ¤ ¤ ¤¤
¤ ¤ ¤ ¤ ¤ ¤ ¤¤

¤ ¤ ¤ ¤ ¤ ¤ ¤¤
¤ ¤ ¤ ¤ ¤ ¤ ¤¤
¤ ¤ ¤ ¤ ¤ ¤ ¤¤
¤ ¤ ¤ ¤ ¤ ¤ ¤¤
¤ ¤ ¤ ¤ ¤ ¤ ¤¤
¤ ¤ ¤ ¤ ¤ ¤ ¤¤

(c) 5x5 grid (N = 128)

Figure 4.25 B-splines with gradually increasing numbers of parame-
ters, N
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Figure 4.26 Time required to compute D, ∇D and HD on a 240×256
image. a) Thin plate spline b) B-spline. Note the difference in complexity
of computing the gradient.

As the analysis predicted, the time complexity of computing the function alone is

roughly linear in the number of parameters. In the case of the TPS transform, the

times required for computation of the gradient and Hessian curve upward. The graphs

are consistent with the complexities being quadratic in the number of parameters as
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found in Section 4.6.1. The cost of computing the Hessian is still more than the

cost of computing the gradient for all cases tested, but the cost of computing the

gradient rises significantly as the number of parameters increases. However, for the

B-spline transform, the complexity of computing the gradient is linear in the number

of parameters. For this case, shown in Figure 4.26b, it is clear that for large numbers

of parameters it is much more efficient to compute the gradient alone, rather than to

compute the Hessian. Therefore significant differences in efficiency between the two

approaches can be expected as the number of parameters rises.

The number of evaluations required for the optimizer to converge when started

exactly at the optimum was also measured(Figure 4.27). Because the gradient mag-

nitude is used as one of the stopping criteria, gradient descent, quasi-Newton and

Newton-Raphson methods all stop after one evaluation. As expected, the evaluations

required for the Powell and downhill simplex methods are linear in the number of

parameters.
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Figure 4.27 Number of evaluations required to converge when started
at the minimum. For gradient based methods only one evaluation is
required.
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These results mostly confirm the expectations from the approximate analysis sum-

marized in Table 4.6. One major exception is that the number of steps required for

convergence with the gradient descent and quasi-Newton optimizers rises at a poly-

nomial, rather than logarithmic rate with respect to the number of parameters. The

estimate of the rate of convergence was derived assuming the optimization algorithm



114 Optimizer Selection and Scaling in Image Registration

to be in the range where the asymptotic convergence rate holds. This assumption

clearly does not hold, even on this simple problem. This may mean that there are

ranges of parameter vector sizes for which the Newton method is superior, even for

transformations where the gradient calculation is efficient. In the following section,

these questions will be addressed with experiments on synthetic and real registration

problems.

4.6.3 Image Registration Tests

Each of the five algorithms being discussed (downhill simplex, Powell’s, gradient de-

scent, BFGS, and Newton-Raphson) were tested by running numerous image registra-

tions from different starting positions. As described in Section 3.2.1 the performance

of the algorithms was measured by recording the time required, the positional ac-

curacy, the number of function evaluations required and the failure rate. Pairwise

statistical significance testing of the results was performed to confirm that the dif-

ferences detected are meaningful. All runs were performed on a 3.6GHz Intel Xeon

using a single threaded implementation.

Based on the results of Section 4.3 the tests reported here use Hessians computed

using Equation 4.16 for NCC (the shorter approximation), and Equation 4.25 for MI

(the generalized Gauss-Newton approximation). Similarly, based on the conclusions

of Section 4.5, the scale factors of Equation 4.37 (i.e., case x1) have been used for

matrix based transforms, and the scale factors with internal ratio reduced, i.e., case

x0.1, have been used for registrations of deformable transforms. As in Section 4.5

synthetic image registration problems have been run on a range of transforms of

different complexities. (In fact, this analysis is performed on the same result data,

but focusing on the x1/x0.1 cases to compare the different optimizers.)

4.6.4 Optimizer Comparison

Figure 4.28 shows the results for registrations of the matrix based transforms using the

MI cost function. Observe that there is a clear progression in number of evaluations

required as the number of parameters, ](φ), increases. For the Powell and downhill

simplex algorithms, this progression is very rapid. Despite these evaluations being
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relatively cheap computationally, since no gradient is required, the methods are much

slower than other approaches for all but the simplest transform.

Based on statistical significance testing, the following overall conclusions could be

drawn for the matrix based transforms

• For all cost functions, Powell required the largest number of evaluations, followed

by downhill simplex, followed by BFGS.

• For MSD and NCC, gradient descent required a statistically significantly larger

number of evaluations than the Newton-Raphson method. For MI, there was no

statistically significant difference. This is likely due to the negative curvature

present in the MI function which makes the Newton-Raphson approach less

effective.

• For most cases, gradient descent was significantly less accurate than all other

methods. It was only showed significantly more accuracy than another method

on the rigid 2D transforms of the Sagittal Brain Slice.

The relationship between time required and number of evaluations for gradient

descent, BFGS and Newton is somewhat difficult to see on Figure 4.28. It also differs

between the different cost functions, MSD, NCC and MI. Therefore, Figure 4.29 shows

the time and evaluation results for only these three optimizers. The Newton-Raphson

method requires an equal or lesser number of evaluations than gradient descent, but

this does not always translate into the corresponding time savings. This is due to the

relatively high cost of computing the Hessian. For MI, which has a computationally

expensive Hessian, the Newton-Raphson method is always slower than gradient de-

scent. However, it is worth noting that the failure rate of the Newton-Raphson method

on the homography cases is significantly better than gradient descent. (These results

are confirmed by the results shown in Chapter 7, Figures 7.3 and 7.4).

The analysis in Section 4.6.1, and the preliminary experiments in Section 4.6.2

suggested that the BFGS method should require fewer function evaluations than gra-

dient descent. This is only the case for the homographies; for all other transforms,

BFGS required significantly more evaluations (and therefore more time). This is pos-

sibly due to its use of line-search as opposed to a trust-region approach, which could
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Figure 4.28 Comparison of registration results for transforms with dif-
ferent numbers of parameters using the mutual information cost function.
The optimizers are identified as DS – downhill simplex, P – Powell’s,
GD – gradient descent, BFGS – Broyden-Fletcher-Goldfarb-Shanno, N –
Newton-Raphson. mTRE is in mm for all cases except the homography,
where it is in pixels. The datasets used were: 2D Rigid – Sagittal Brain
Slice; 3D Rigid and Affine – Brainweb; 2D Homography – Agra Fort.
Note that the vertical scale is not the same in all cases.
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Figure 4.29 Comparison of time and number of evaluations for matrix
based transforms with different numbers of parameters shown for all cost
functions on matrix based transforms. Optimizers shown are the Newton-
Raphson (N), Broyden-Fletcher-Goldfarb-Shanno (BFGS) and gradient
descent (GD). Note that the vertical scale is not the same in all cases.
The datasets used were: 2D Rigid – Sagittal Brain Slice; 3D Rigid and
Affine – Brainweb; 2D Homography – Agra Fort
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require more evaluations. However, note that on the simple function of Section 4.6.2,

BFGS used far fewer iterations. It seems to be a characteristic of image registration

problems that makes the BFGS method use more iterations.

It is clear from the results, that as the number of parameters increases, the down-

hill simplex and Powell methods become impractical. Therefore they were not investi-

gated for the deformable registrations. The Newton-Raphson algorithm also required

too much time for the 1029 parameter 3D B-spline case and so only was applied to the

three smaller transforms. The time and number of evaluations for the registrations

with deformable transforms are shown in Figure 4.30. Once again, the results are

presented for all three image difference measures investigated to show the differences.

Several patterns are apparent. For MSD and NCC, for the 2D transforms which have

relatively lower numbers of parameters, the BFGS optimizer requires fewer evalua-

tions, consistent with the analysis in Section 4.6.1. However, in all other cases it

requires far more evaluations than gradient descent. This is surprising, and may be

partly due to the line search being inefficient. The Newton-Raphson optimizer con-

sistently requires fewer iterations than the gradient descent method, but this only

translates into a cost savings for the TPS transforms. This is because computing

the gradient has the same computational complexity as computing the Hessian for

these transforms. The savings in number of iterations is worthwhile. For B-splines,

however, the gradient is relatively cheap, and despite the savings in iterations it is

not efficient to compute the Hessian.

The accuracy of the deformable transformations was again evaluated using his-

tograms of the residual error. These are shown in Figure 4.31. As in the case of

the scaling experiments, the differences are subtle. These distributions of errors were

compared run by run with a rank sum test for significance. When the difference be-

tween runs was significant, the algorithm with the lower median error was considered

superior. For a majority of cases, BFGS and Newton had higher accuracy using this

criterion than gradient descent. However, as can be seen in Figure 4.31, they are only

slightly more accurate. In fact, although the numbers and statistical tests indicate

the superiority of the BFGS and Newton-Raphson methods, this is only apparent on

the 2D B-spline case of Figure 4.31. The 3D B-spline case of Figure 4.31 is interesting

because it shows a bulge at the right for the gradient descent method. This indicates
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that a certain number of points are being made worse by the registration process. As

discussed in Section 4.5.4, explicit regularization may be the best way to approach

this issue.

For thin plate spline transforms, when using an MSD or NCC cost function, the

Newton-Raphson approach would seem to be a clear choice with both superior time

performance, and equivalent or superior accuracy. For the B-spline transforms, the

BFGS method seems to give slightly more accuracy, but at a much larger computa-

tional expense. It is probable that adjusting the stopping criteria for the gradient

descent measure could enhance its accuracy without much additional cost. The gra-

dient descent method is thus the recommended choice for optimizing B-splines trans-

formations, and for optimizing TPS transformations with the MI image difference

measure.

That these accuracy differences are small, and probably inconsequential, is also

illustrated by Figures 4.32 and 4.33. These figures show difference images between

the registered results for one run of each of the simulated deformable transforms.

Despite the large scale of the printing, objective differences between the optimization

algorithms are extremely hard to detect. The results for the BFGS may be marginally

visually better (see especially Figures 4.32g and 4.33g), which agrees with the sta-

tistical testing results. Whether the additional computational expense is worth this

marginal improvement is debatable.
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Figure 4.30 Comparison of time and number of evaluations for de-
formable transforms with different numbers of parameters showing all cost
functions on matrix based transforms. Optimizers shown are the Newton-
Raphson (N), Broyden-Fletcher-Goldfarb-Shanno (BFGS) and gradient
descent (GD). Note that the vertical scale is not the same in all cases.
Datasets used were: 2D TPS and B-spline – Sagittal Brain Slice; 3D TPS
and B-spline Deformable Phantom.
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Figure 4.31 Error distributions for results of deformable registration
using the MI cost function. The graph shows the distribution of errors
over a 50 × 50 grid (50 × 50 × 50 in 3D) of points in the image extent.
Point errors for all 25 runs have been combined into one histogram for
each optimizer. Vertical lines show the median error. All optimizers,
achieved a reasonably successful registration, as shown by the distinct
leftward shift in the distributions. Datasets used are: 2D TPS and B-
spline – Sagittal Brain Slice; 3D TPS and B-spline Deformable Phantom.

Results using 2D TPS transformation

(a) Pre-registration (b) GD (c) BFGS (d) N

Results using 2D B-spline transformation

(e) Pre-registration (f) GD (g) BFGS (h) N

Figure 4.32 Difference images before and after 2D registration with
TPS transforms (top row) and B-spline transforms (bottom row). Al-
though some significant differences between algorithms were detected, vi-
sually the differences are minor. The results for the BFGS algorithm are
slightly better visually, which agrees with the numerical results.
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Results using 3D TPS transformation

(a) Start (b) GD (c) BFGS (d) N

Results using 3D B-spline transformation

(e) Start (f) GD (g) BFGS
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Figure 4.33 Cross sections through difference images before and af-
ter 3D deformable registration with TPS transforms (top row) and B-
spline transforms (bottom row). Although some statistically significant
differences between algorithms were detected, visually the differences are
minor. The results for the BFGS algorithm are slightly better visually,
which agrees with the numerical results. The Newton-Raphson algorithm
was too slow to use with in the 3D B-spline case.
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4.6.5 Realistic Experiments

The preceding experiments on synthetic registration problems have strongly suggested

certain conclusions. To confirm these results on realistic data, 2D and 3D rigid regis-

trations using the Axial Brain Slices and Vertebra datasets described previously were

examined. These datasets are multimodal, so only mutual information was used to

register them. The results for registrations using all 5 of the algorithms under test are

shown in the leftmost two columns of Figure 4.34. As in the simulated registrations,

downhill simplex and Powell’s algorithm require by far the most iterations and the

most time. The BFGS algorithm requires significantly more iterations than either

gradient descent or the Newton-Raphson method which causes it to take more time.

This is consistent with the results on the simulated registration problems, but differs

from the expectations of the analysis in Section 4.6.1 and the simple experiments in

Section 4.6.2.

Registrations were also performed between the different cases of the deformable

phantom object. The time required and number of iterations is shown in the rightmost

two columns of Figure 4.34. There are not enough samples to safely draw conclusions

about statistical significance, but the results are in agreement with the results of

the simulated experiments. In this case, there is no gold standard transformation

to compare to. However, a comparison for accuracy can be performed using the

distances between points in the segmented mesh representation of the balloon, as

described in Section 4.2.4. The distribution of these errors can be compared as it was

for the previous experiments, and these results are shown graphically in Figure 4.35.

By using the statistical comparison technique to discern differences, for the TPS

transform gradient descent significantly outperformed Newton in Cases 1, 2 and 4,

and for the B-spline case BFGS significantly outperformed gradient descent in cases

2, 3 and 4. It is interesting that the results for TPS are opposite to those reached

in the simulated cases. It is important to note that the differences in median, while

statistically significant, are very small.
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Axial Slices Vertebrae Deformable Phantom
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Figure 4.34 Optimizer comparison on realistic datasets. Top row, rigid
2D registrations of axial slices. Second row, rigid 3D registration of Verte-
bra dataset. Bottom two rows report time and number of evaluations for
deformable registration of the phantom dataset. Accuracy is described
using histograms of point error, and there were no failures for this case.
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Figure 4.35 Distributions of errors for registrations of deformable
phantom volumes. Top row, registration using 3D thin plate spline. Sec-
ond row, registration using 3D B-spline. Cases are (1) partially inflated
to deflated, (2) partially inflated to fully inflated, (3) fully inflated to de-
flated, (4) fully inflated to partially inflated. For case 3, the median error
for the raw data is off the graph, at 5.19mm.

4.6.6 Summary

The differences between optimizer performance has been examined for the MSD, NCC

and MI image difference measures across a number of different transforms. The re-

sults show very clearly that the Powell and downhill simplex algorithms are slower

than others, and that this slowness rapidly becomes more severe as the number of pa-

rameters increases. These algorithms are not an ideal choice in terms of efficiency for

any case. Powell’s algorithm, however, proved to be very robust to issues of scaling,

and generally performed very reliably.

The differences between the gradient descent, BFGS and Newton method are

highly dependent on the image difference measure, and the number of parameters

in the transform. The BFGS algorithm requires more evaluations than the gradient

descent method in nearly all cases, which is unexpected based on the analysis and

preliminary experiments. Some of this may be due to differences between the line

search approach of the BFGS algorithm and the trust-region approach of the gradient

descent one. However, these differences should have affected the preliminary exper-

iment as well. It is conjectured that the apparent difficulty that the BFGS method
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encounters may be due to some violation of the assumptions that it is based on. The

BFGS method assumes that the function is smooth and the Hessian is positive def-

inite. Image difference measures are always a bit noisy. The cases where the BFGS

method takes a particularly large number of iterations to complete are when using the

MI measure, and for the 3D B-spline transforms. The MI function is saddle-shaped,

meaning its Hessian is indefinite, while the B-spline transforms have a very sparse

Hessian which is nearly singular. Similar, somewhat disappointing, performance is

shown for the BFGS method in Chapter 7 when working with inverse compositional

MI.

Whether Newton-Raphson or gradient descent would be the better method to

choose depends on both the type of transform and the image difference measure. The

Newton-Raphson method requires fewer, but more computationally expensive itera-

tions. When computing the gradient is computationally expensive, such as with the

TPS transforms, then the Newton-Raphson approach is quite efficient. When comput-

ing the gradient is computationally cheap, then the savings in numbers of iterations

is outweighed by the cost of calculating the Hessian, and the gradient descent method

is more effective. These effects are strongest for the MSD and NCC cost functions;

the Newton-Raphson method is less effective on MI, due to the negative curvature in

the cost function. It is worth noting that the Newton-Raphson approach seems to be

significantly more reliable for the homography, which may be due to the non-linear

nature of this transform.

4.7 Conclusions

This chapter has addressed the issue of optimizer selection for efficient image registra-

tion in three parts. First, in order for any comparison of Newton-Raphson algorithms

to be valid, it was necessary to compute valid approximations of the image difference

measure Hessian. Second, as parameter scaling has a large effect on optimizer per-

formance, a means of consistently and reliably scaling the parameters was necessary.

Finally, in a context where these issues were resolved, a valid comparision could be

made between algorithms.

Section 4.3 examined how the Hessian may be approximated for image registra-
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tion problems. It was shown that the Gauss-Newton approach to approximating the

Hessian relies on the cost function having the form D(I(φ)) where I is a large di-

mension vector. This clearly applies to the image registration problem. In such a

case, the Taylor series expansion has two second order terms, and the Gauss-Newton

approximation is to drop the one that has second order derivatives of the innermost

function, I. This technique was applied to derive approximate Hessians for the NCC

and MI image difference measures. The MI approximate Hessian was shown to be

superior to existing approximations in the literature.

While it is often recommended that optimization problems be well-scaled, no prin-

cipled method of determining these scale factors for image registration problems ex-

isted. A method for automatically determining these scale factors from the problem

geometry alone was derived based on an optimal diagonal preconditioner. Experi-

ments showed that these scaling factors are important for optimizer performance, and

that for matrix based transforms, using the scaling factors given by Equation 4.37

resulted in clearly superior performance in terms of failure rate, with time required

and mTRE also showing better results.

For the deformable transformations the effect of scaling the parameters was much

more subtle. The experiments shown that a set of scaling factors modified to have less

extreme ratios between terms was more effective on these cases. It is conjectured that

this difference occurs because the optimal scaling factors allow very large variations in

certain parameters of the deformable transformation. No explicit regularization was

applied to the problems explored here, and applying a regularization technique to

keep these parameters from getting too large might be an appropriate way to address

this issue.

Section 4.6 compared five different optimization algorithms across a range of image

difference measures and transformations. The overall conclusions are that the downhill

simplex and Powell algorithms are too inefficient for any but the smallest registra-

tion problems. Choosing between the gradient descent, BFGS and Newton-Raphson

techniques, however, depends on the specific details of the registration problem.

For the NCC and MSD cost functions, the Newton-Raphson algorithm requires

fewer iterations and is as reliable as either gradient descent or BFGS for moderate

numbers of parameters. However, for the MI cost function, the Newton-Raphson
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algorithm is less effective, probably due to the negative curvature of the MI cost

function. Nevertheless, for moderate numbers of parameters (see, e.g., Figure 4.30),

the Newton-Raphson algorithm requires fewer iterations for MI as well. Whether this

savings in evaluations is worthwhile depends entirely on the computational expense

of evaluating the gradient. Even for the TPS transform, which has an expensive,

O(N2), gradient calculation, the Newton-Raphson method proves slower than the

gradient descent method. It is worth pointing out, however, that for the registrations

of 2D homographies using MI the Newton-Raphson method was significantly more

reliable than the gradient descent method, and faster than the BFGS method.

The BFGS method required a larger number of iterations than the preliminary

analysis suggested. This makes the gradient descent method quite attractive in com-

parison. However, overall the gradient descent method seems to give slightly less

accuracy than either BFGS or the Newton-Raphson method. As the difference in

accuracy is small, however, the gradient descent method may still be the approach of

choice, particularly in a time-sensitive application. It is probably possible to achieve

better accuracy with gradient descent by adjusting the stopping criteria, although

that was not explored here.

4.7.1 Future Directions

There are several aspects of this research that would be interesting to explore further.

Both trust-region and line search approaches were used, but the experimental setup

does not allow any conclusions about their relative merit to be drawn. It would be

interesting to directly examine the difference in performance between them.

It was presumed in this work that the complexity of computing the Hessian was

O(N2). However, if the Hessian is sparse, this complexity may actually be lower.

Changing this complexity will change the balance between the gradient descent,

Newton-Raphson and BFGS methods, and sparse-Hessian based approaches could

lead to efficient Newton-Raphson optimization of B-spline transforms.

The performance of the BFGS optimization algorithm was poorer than expected,

requiring a relatively large number of iterations. It is conjectured that one reason

for this could be indefiniteness of the Hessian. Certain trust-region quasi-Newton

approaches, such as the symmetric rank-one update are reputed to be more effective



4.7 Conclusions 129

on problems of this kind [151]. However, implementation of trust-region quasi-Newton

methods is not a trivial matter [151], and more research would be needed in this area.

Finally, it is clear from this work that different optimization approaches have

different advantages and disadvantages. Ultimately the ideal solution for image regis-

tration problems may be to combine approaches. This could be done simply by using

different optimizers at different levels of the multiresolution pyramid, or in a more

sophisticated way, by actually alternating Newton, gradient descent or BFGS steps at

different points in the optimization. For example, based on the relative strengths and

weaknesses of the gradient descent and B-spline methods, one could imagine doing a

number of gradient descent steps to approach the solution of a B-spline transform,

followed by a short period of BFGS line-searches to improve the accuracy.
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Chapter 5

Anytime Algorithms for Faster

Registration

Recall that the direct image registration problem is expressed as the minimization of

an image difference measure, D, defined between the fixed image, and a moving image

that is being warped to match it. As discussed at length in the previous chapter, the

optimization procedure requires repeated evaluation of this measure. One way to

achieve computational efficiency is to use only some of the pixels for the registration

process. However, using only some of the image can lead to problems with accuracy

and reliability. This chapter focuses on the question of how many of the pixels should

be used.

The image registration problem clearly faces a tradeoff between computation time

and accuracy. In the field of artificial intelligence, the process of intelligently dealing

with tradeoffs such as this one is referred to as deliberation control. This chapter

explores the idea of mapping these techniques developed in the field of real-time arti-

ficial intelligence, onto the image registration problem. Deliberation control methods

rely on two key components: algorithms that support partial evaluation, and knowl-

edge about how those algorithms perform after different amounts of computation. A

class of algorithms supporting partial evaluation are the anytime algorithms [65, 106],

which provide a solution when run for any length of time. The solution quality is

guaranteed to improve with the amount of computation performed. This chapter pro-

poses the use of a deliberation control framework using anytime algorithms to arrive
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at a principled solution to the speed vs. accuracy trade-off in this problem. The first

step is an off-line training process to learn the properties of the difference measure

under consideration, in terms of accuracy vs. computation time, by analyzing image

pairs for which the transformation parameters are known. Given a new pair of im-

ages to align, this knowledge is used to determine the number of pixels that need to

be considered at each step of the optimization. This chapter explores the effective-

ness of this approach using two common difference measures, mean squared difference

and mutual information, and a gradient descent optimizer. The algorithm has been

tested on several types of images: images of everyday scenes, multi-modal medical

images and earth observation data (i.e., Landsat and Radarsat images). In all cases,

using a deliberation control approach is faster than computing the transformation

using all the image data and gives more reliable results than simply performing the

optimization using an arbitrary, fixed, percentage of the pixels.

The remainder of this chapter is organized as follows. The following section re-

views previous work on performing image registration with only partial data, and on

methods of deliberation control using anytime algorithms. The details of how deliber-

ation control has been implemented in the context of image alignment are then given

in Section 5.2. Finally, Sections 5.3 and 5.4 describe the experimental setup, results

and conclusions.

Publications

The majority of this chapter is based on work published in:

[39] Rupert Brooks, Tal Arbel, and Doina Precup. Anytime similarity mea-

sures for faster alignment. Computer Vision and Image Understanding,

110(3):378–89, 2008.

[38] Rupert Brooks, Tal Arbel, and Doina Precup. Fast image alignment

using anytime algorithms. In Proceedings of the 20th International Joint

Conference on Artificial Intelligence (IJCAI2007), pages 2078–2083, Hy-

derabad, India, January 2007.
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5.1 Previous Work

That only some of the pixels are necessary to compute the image difference measure

was realized early on by Barnea and Silverman, who proposed the Sequential Similar-

ity Detection Algorithms (SSDA) [15]. They were interested in the problem of finding

the best translational match between a model image patch and an image of interest.

As was the state of the art at the time, they solved for this with an exhaustive search

over possible integer translation positions. They defined a threshold such that if the

image difference measure exceeded this threshold, it was certain to be a bad match

and could be rejected without further computation. (At about the same time, Nagel

and Rosenfeld [148] suggested something similar involving pixel selection, which will

be discussed in the next chapter.)

Defining this threshold requires some kind of bound on the image difference mea-

sure, and this work did not deal at all with the use of derivatives for image measure

calculation. Nevertheless, the idea of using only some of the pixels was popular, many

authors (e.g., [108, 124, 181, 185]) applied it in somewhat ad-hoc ways by using some

fixed percentage of the image data. For example, the ITK manual [109] recommends

using about 30% of the pixels for mutual information registration, a number presum-

ably arrived at by experiment. Recently, Klein et al. [119, 120] have investigated the

performance of various optimization algorithms under different levels of regular sub-

sampling of the image while solving for complex deformations modeled by B-Splines.

This recent work has neglected to consider that different levels of computation may

be required at different times in the optimization. It could be argued that the original

SSDA [15] has this property, but instead of an arbitrary percentage of pixels, they

propose an arbitrary cutoff on the difference measure value. This is fundamentally a

branch and bound search, and does not generalize well to iterative optimization. The

issue of whether different types of images require different levels of calculation has

also been ignored.

5.1.1 Deliberation Control with Anytime Algorithms

In many artificial intelligence tasks, e.g., planning, the quality of the solution ob-

tained depends on the amount of time spent in computations. Hence, trade-offs are
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necessary between the cost of sub-optimal solutions and the cost of spending time

doing further computation. This process, called deliberation control, has been inves-

tigated in the context of real-time artificial intelligence and a number of approaches

have been proposed [107]. In order for such an approach to be practical, it must be

possible to partially evaluate solutions to the underlying problem and the relationship

between the amount of computation performed and the quality of the solution must

be understood.

A class of algorithms supporting partial evaluation are the anytime algorithms [65,

106], which provide a solution when run for any length of time. The solution quality

is guaranteed to improve with the amount of computation performed. Deliberation

control strategies using anytime algorithms have been applied to both theoretical and

practical problems including robot control [195], solution of decision problems [152],

and shape extraction in image processing [125].

Interestingly, Fischer and Niemann [77] proposed an “any–time” approach to high

level control of image parsing, but they seem to have coined the term independently.

They propose to perform iterative optimization of multiple hypothesis fits indepen-

dently in parallel, taking the best after a certain cutoff is reached. The work presented

here is based on the formal concept of anytime algorithms proposed in [65, 106], and

deals with the computation level at each evaluation of the difference measure, D.

5.2 Deliberation Control in Image Registration

To formulate an effective deliberation control strategy using anytime algorithms it

is necessary to have meta-level knowledge of their performance as a function of the

amount of computation performed [65, 106]. This knowledge is stored in a perfor-

mance profile. Performance profiles may be based on theoretical knowledge of the

algorithm, on empirical testing of its performance at different computation levels, or

a combination of the two. In any case, the decision to continue computation will be

based on an estimate of the accuracy of the current result, and an estimate of the

potential improvement if the algorithm continues to run [65, 92, 106, 126].

The simplest type of performance profile is a static one, which predicts accuracy

as a function of the amount of computation completed. However, for the problem of
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interest, this is equivalent to simply using a fixed, arbitrary percentage of the pixels. If

feedback about the current run of the algorithm is available, it can be incorporated in

a more sophisticated approach. A dynamic performance profile [92, 126] uses feedback

to estimate the accuracy as the algorithm progresses. It is described by two functions:

â = Pfwd(f, p), maps the percentage of computation completed, p, and the feedback

parameter, f , to an expected accuracy, â. The other, p̂ = Prev(f, a), maps a and

f to the expected percentage of computation required, p̂. Conceptually, these two

functions are inverses. However, both have to be maintained in general, to facilitate

the decision making. A controller can use these functions to gradually increase the

amount of computation performed, until the estimated accuracy is adequate for the

task.

As mentioned in Chapter 1, the most computationally intensive part of image

alignment is the repeated evaluation of the difference measure D and its gradient ∇D.

The optimization algorithm needs this information in order to take a step in parameter

space towards the optimal setting. Note that the calculation only has to be accurate

enough to ensure that the next step is correct; determining these values exactly is

not necessary. Therefore, it is proposed to implement image difference measures and

their gradients as anytime algorithms, and to learn performance profiles describing

their accuracy at different levels of computation.

5.2.1 Anytime Image Difference Measures

For an image difference measure to act as an anytime algorithm, its implementation

must be able to support partial evaluation, as well as to continue an interrupted calcu-

lation efficiently. To achieve this, each image difference measure, D(φ), is redefined as

a function D(φ, p) of both the parameters, φ, and the percentage of pixels to be used,

p. To avoid biasing the computation towards one area of the image, the pixels are

processed in a random order. Anytime versions of the popular mean squared differ-

ence and mutual information image difference measures have been implemented here,

although the approach is general and can be applied to other difference measures.
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Mean Squared Difference

Recall from Section 3.1.2 that the mean squared difference DMSD is simply an average

of the squared differences in intensity between corresponding pixels. Thus it is very

easy to redefine it as an anytime measure, by simply averaging over the first pN

randomly selected pixels.

DMSD(φ, p) = − 1

bpNc

bpNc∑
i=1

(If (Xi)− Im(W (Xi,φ))2

where N is the total number of pixels in the image. The gradient of this measure is

also easy to compute as an anytime algorithm:

∇φDMSD(φ, p) =
2

bpNc

bpNc∑
i=1

[(If (Xi)− Im(W (Xi,φ)))

·∇W Im(W (Xi,φ))∇φW (Xi,φ)]

Note that because the difference measure and its derivative consist of simple sums, it

is easy to add more pixels to the computation, and both the difference measure and

the gradient can be updated incrementally in the usual fashion.

Mutual Information

As described in Section 3.1.4, the mutual information implementation used here is

the one proposed by Thévenaz and Unser [185], which relies on a B-spline windowed

representation of the joint probability distribution of the intensity levels in the two

images. This measure is implemented by keeping an unnormalized joint histogram of

the intensities in both images, Pkl, and a set of derivatives of this joint histogram,

one for each transformation parameter. The anytime implementation also maintains

these arrays. Specifically the probability distribution is given by

Pkl(φ, p) =

bpNc∑
i=1

β0

(
k,

⌈
If (Xi)− bf0

df

⌉)
β3

(
l,

⌈
Im(W (Xi,φ))− bm0

dm

⌉)
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which is simply Equation 3.5 modified to be over the first pN pixels. The normaliza-

tion factor of Pkl at a particular computation level p is:

α(φ, p) =
K∑
k=1

L∑
l=1

Pkl(φ, p) = bpNc

Similarly, the gradient information is kept in tables of the form

∇φPkl(φ, p) =

bpNc∑
i=1

∂β3

(
l − Im(W (Xi,φ))−bm0

dm

)
∂Imi

· ∂Imi

∂φ
. (5.1)

which is Equation 3.7 extended to support partial evaluation controlled by the level

p. When needed, these tables can be normalized using the factor γ = (dmbpNc)−1.

The algorithm maintains the unnormalized probability distribution, and its un-

normalized partial derivatives, as described above, which can be easily updated when

more pixels are added, because the table entries are simple sums. The image difference

measure and its gradient are then computed as needed from this table using

DMI(φ, p) =
K∑
k=1

L∑
l=1

Pkl(φ, p) log
Pkl(φ, p)

(
∑

k′ Pk′l(φ, p)) (
∑

l′ Pkl′(φ, p))

and

∇φ,pDMI(φ, p) =
K∑
k

L∑
l

∇φ,pPkl(φ, p) log
Pkl(φ, p)∑K
k′ Pk′l(φ, p)

which are just simple modifications of Equations 3.6 and 3.8.

Besides the property of being able to be stopped and restarted, anytime algorithms

must also produce a better result the longer they are allowed to run. Both of these

measures and their derivatives may be considered anytime algorithms, as the bound

on the maximum error decreases monotonically as the percentage of computation

increases. A proof of this is presented for the MSD and MI measures in Appendix E.

It should be straightforward to extend the proof to other cost functions if needed.
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5.2.2 Performance Profiles

Exploiting the partial evaluation possibilities of the anytime difference measures re-

quires dynamic performance profiles describing their expected accuracy at different

computation levels and feedback values. These profiles are created off-line, before the

registrations are performed. They are created by investigating the properties of the

gradient of the image difference measure on various image pairs which are charac-

teristic of the type of data to be aligned. By “characteristic” consider that most of

the applications considered involve the repeated registration of pairs of images which

come from similar instruments being used in similar contexts. For example, an appli-

cation might be the registration of multiple photos into a mosaic, in which case, the

images in question would be images of outdoor scenes. Perhaps a more compelling

example application of this algorithm would be for the registration of intraoperative

multimodal imagery during surgery. In this context the images in question could be

corresponding MRI and ultrasound pairs and it would be necessary to register them so

that the current position of the patient, which is being mapped by the ultrasound, is

brought into alignment with the usually higher resolution preoperative data. In either

case, prior to using the algorithm, typical examples of image pairs to be registered

would be obtained, and a performance profile generated from them.

The property of the image difference measure which must be measured by this

profile depends on how it is being used by the optimization algorithm. The imple-

mentation described in this thesis uses a simple steepest descent optimizer (described

more fully in Section 5.3.2). Carter [50] has analyzed a similar class of optimizers and

has proven their convergence using the following measure of relative error:

ε =
||∇trueD −∇measuredD||

||∇trueD||
, (5.2)

where ∇trueD is the correct value of the gradient of D and ∇measuredD is the value

actually computed, which contains some error. This definition is adopted for the

performance profiles.

A dynamic performance profile requires a feedback parameter which indicates the

progress of a particular calculation run. Based on the Equation 5.2 the gradient

magnitude is an ideal candidate. Given a set of samples of gradients computed at
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different computation levels at different points throughout the parameter space, a

performance profile can be created as a table mapping computation level and gradient

magnitude to accuracy. To construct such a table the gradient was sampled at different

computation levels at many points in the transformation space. For each computation

level, p, the gradient magnitudes were grouped into bins and the expected accuracy

of the gradient, Ēp, was computed for each bin as follows:

Ēp = 1−
∑
i

||∇100%D(φi)−∇pD(φi)||
||∇100%D(φi)||

. (5.3)

Here∇100%(φi) is the gradient computed using all the pixels and∇p(φi) is the gradient

computed at computation level p. These correspond to ∇trueD and ∇measuredD in

Equation 5.2, respectively. The φi are the sampled points in the transform space.

When a new pair of images is to be registered, the optimizer uses this table to

progressively increase the amount of computation performed until the estimated ac-

curacy reaches a criterion for acceptability. The analysis in [50] indicates that signifi-

cant computational gains can be made, with a small (ε ≈ 10%) reduction in accuracy.

Therefore the optimizer seeks an expected accuracy of 90% for each gradient that it

computes.

A simple example of how the table can be used to control computation is shown

in Figure 5.1. This table can act as a performance profile where two functions, â =

Pfwd(f, p) and p̂ = Prev(f, a) are implemented through simple lookup. For example,

suppose an optimizer requires an accuracy of 98%. On an initial probe, the feedback

parameter, f , is 0.55. By examining the third row applying to 0.4 < f ≤ 0.6, one

predicts that with p = 8%, the desired accuracy level will be obtained (arrow 1).

After performing 8% of the computation, however, suppose f is now 0.1. Thus the

accuracy is only 93% (arrow 2) meaning more computation is required. The required

p is now estimated as 16% (arrow 3), and so on. In the image registration case, the

parameter p will be the percentage of pixels processed in the image. The feedback

parameter is the magnitude of the gradient.



5.3 Experiments 139

0.5% 1% 2% 3% 4% 6% 8% 16% 32% 64% 100%
31% 53% 63% 76% 89% 91% 93% 98% 99% 100% 100%
55% 71% 88% 90% 91% 93% 95% 99% 100% 100% 100%
72% 88% 90% 93% 95% 97% 98% 99% 100% 100% 100%

0.6<f 80% 89% 92% 96% 99% 100% 100% 100% 100% 100% 100%

f≤0.2 
0.2<f≤0.4 
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Figure 5.1 Dynamic performance profile example: Values in the table
represent the expected accuracy of the results.

5.3 Experiments

To test the anytime algorithm approach, a number of performance profiles were gen-

erated off-line, and alignments were performed on a different set of images on-line

during testing. Four classes of images (shown in Figure 5.2) with at least two image

pairs each were used in the testing process. The first image class consisted of typical

digital photos (DP) (images a-d) Both a) and d) were self-aligned and a) was aligned

affinely against several images of the same scene taken from different camera posi-

tions (images b, c) using both difference measures1. The second class of images (M1)

(images e, f) were slices from T1-weighted magnetic resonance imaging (MRI) vol-

umes which were self-registered using the DMSD measure. The third class of images

(EO) are patches from georeferenced, orthorectified Landsat 7 and Radarsat imagery

that were registered to each other using the mutual information measure (rows 3 and

4)2. The final class of images (M2) are slices from previously registered volumes in

different medical imaging modalities, including T1 and T2 weighted MRI, and com-

puted tomography (CT) (last row). These images were aligned to each other using

the mutual information measure3.

1Images 5.2a, 5.2b, 5.2c, and 5.2d from K. Mikolajczyk http://www.inrialpes.fr/lear/
people/Mikolajczyk/.

2Landsat and Radarsat images (5.2g, 5.2h, 5.2i, 5.2j, 5.2k, 5.2l) from Natural Resources Canada
http://geogratis.gc.ca.

3Medical images (5.2e, 5.2f, 5.2m, 5.2n, and 5.2o) courtesy Montreal Neurological Institute.

http://www.inrialpes.fr/lear/people/Mikolajczyk/
http://www.inrialpes.fr/lear/people/Mikolajczyk/
http://geogratis.gc.ca
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(a) boat-1 (b) boat-2 (c) boat-3

(d) graffiti (e) mri-1 (f) mri-2

(g) Landsat-1 (h) Landsat-2 (i) Landsat-3

(j) Radar-1 (k) Radar-2 (l) Radar-3

(m) MRI T1 (n) MRI T2 (o) CT

Figure 5.2 Images used for anytime registration experiments
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5.3.1 Generating Performance Profiles

A performance profile was generated offline for each combination of image class and

difference measure that was to be tested. These profiles were constructed using train-

ing image pairs of the same imaging modalities as the ones to be aligned. As these

performance profiles should generalize to images of different sizes and intensity ranges,

the image intensities are normalized to a range of 0 to 1 before calculation and the

optimal scale factor developed in Section 4.5 was used to scale the gradients. This

scaling has the effect of making unit changes in the parameters cause equal RMS pixel

shifts in the image, thus normalizing for the sizes of the images.

In order to produce a reliable performance profile, it is important to sample the

possible values of the gradient fairly evenly over its range of possible magnitudes.

However, the magnitudes of the gradient do not tend to have an even distribution. In

general, the large values of ∇D are found far from the correct registration parameters,

while smaller values of ∇D are clustered around the true parameters. Therefore, in

order to get a reasonably even sampling, two sets of samples of ∇D were computed.

The first set was computed at 2000 points randomly distributed in the rigid transform

space over the fairly wide range of (angle = ±60°; ∆x,∆y = ±60 pixels). A second set

of samples was also taken at 2000 random points in a much smaller range: (angle =

±1°; ∆x,∆y = ±1 pixels). In each case, the value of∇D was computed at 12 different

levels of computation: p ∈ { 0.01%, 0.02%, 0.05%, 0.1%, 0.2%, 0.5%, 0.7%, 1%, 2%,

5%, 7%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 100%}
With these samples, the profiles were constructed using the method described in

Section 5.2.2. The resulting performance profiles are shown graphically in Figure

5.3. Note that each profile has a roughly similar shape. At large values of the

feedback parameter, ||∇φD||, little computation is needed to get a good result. For

smaller values, however, progressively more computation is needed. This agrees with

intuition; since the image noise level remains constant, small values are progressively

harder to measure. It is the curved shape of these graphs that allows us to realize

important performance gains. Simply selecting a constant fraction of pixels to use

would inevitably be too many for some feedback values and too few for others.

Despite their basic similarity, however, there are important differences between

the profiles. For example, note that for both difference measures, the medical images
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require a much greater percentage of computation for an accurate result for a given

gradient magnitude. The alignment tests, discussed below, reveal that these images

require more computation to align successfully. Also note that the DMI performance

profiles for both geographic data and medical images indicate that no less than 30%

of the pixels will ever be used for these classes of images using this method.
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Figure 5.3 Performance profiles: The percentage of computation re-
quired to achieve Ep = 90%. The graph on the left is for the mean
squared difference measure (MSD) and the one on the right is for the
mutual information measure (MI).

5.3.2 Implementation

As described in Section 3.1 the Insight Toolkit library has been used to implement

an image registration software framework. This provides a strong baseline imple-

mentation for comparison purposes. In the usual implementation, the cost function

is calculated using a loop over all the pixels in the fixed image. Extending this to

support anytime computation is reasonably simple. Instead of discarding the inter-

mediate variables described in Sections 5.2.1 and 5.2.1 they are cached. If the cost

function is evaluated again, to a greater level of accuracy, the accumulation over pixels

is continued where it left off.
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The optimizer used was the simple but effective gradient descent optimizer used

in many of the examples in [109], and previously discussed in Section 3.1.10. This

algorithm is shown in Algorithm 1. It works by taking steps of a constant length in

the direction opposite the difference measure gradient. At each step, the gradient is

compared to the last gradient evaluated. If the gradient has changed direction by

more than 90°, then the step size is halved. The algorithm stops when either the step

size, or the gradient magnitude drops too low.

As discussed in Chapter 4, the gradient descent optimization can work very well

provided the objective function is well-scaled. In this work, in all cases the objective

function was scaled by the optimal scaling given by Equation 4.37.

To adapt the optimizer for use with an anytime measure, an additional loop is

inserted in place of steps 3 and 4 in Algorithm 1 (see Algorithm 4 steps 3-10). First,

the gradient is computed using some small number of pixels, to get an estimate of its

magnitude. Then, the accuracy of the current gradient, and the amount of computa-

tion required to get the desired accuracy, are estimated using the performance profile.

If the accuracy is not yet sufficient, the calculation is continued. Once the required

estimated accuracy is achieved, the algorithm continues as the original.

5.3.3 Registration Tests

The experimental procedure follows the basic framework described in Section 3.2:

Three sets of 20 random starting positions were created. Each set was at a different

effective distance from the identity transform in order to test the algorithms over the

capture range of the optimizer. For each combination of image, difference measure

and algorithm, the true transform was composed with these starting positions, and

the result was used to initialize the alignment process. Alignments were performed

using the standard approach (labeled GD100 in the graphs), the standard approach

using only a specified percentage of pixels (labeled GDx, if x% of the pixels is used)

and the anytime approach (AGD). The computational efficiency was measured in

terms of running time. Each reported time was obtained on a 1.9GHz AMD Athlon

machine with 3GB of RAM.

As discussed in detail in Section 3.2, in addition to measuring any speed increases

the quality and reliability of the results must also be determined. The quality of a
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Algorithm 4 Anytime Steepest Descent Optimizer

1: Set start position φ0; iteration counter n = 0; scaling matrix S; starting step size
s; accuracy level a; starting percentage of pixels pstart

2: Repeat
3: Set anytime probe counter m = 0,starting computation level p(m) = pstart
4: Repeat
5: Compute the gradient at the current position and computation level,

∇D(n,m)(φ(n), p(m))
6: Compute the scaled gradient, ∇D∗ = S ×∇D(n,m)(φ(n))
7: Compute the estimated accuracy of this gradient â(m) =

Pfwd(||∇D∗||), p(m))
8: Compute the estimated amount of computation required p(m) =

Pref (||∇D∗||), a)
9: Set m = m+ 1;

10: Until â(m) > a
11: If the scaled gradient has changed direction by more than 90° then
12: Set s = s

2
// Reduce the step size

13: End if
14: Compute the update to the parameters, ∆φ(n)=

∇D∗
||∇D∗|| · s

15: Set φi+1) = φ(n) + ∆φ(n) and n = n+ 1
16: Until the convergence criteria are reached
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result was measured by the mean target registration error (mTRE), and the reliability

of each method was measured by the number of failed alignments. All of these experi-

mental observations were tested for statistical significance using a paired t-test for the

run times and mTRE, and a McNemar test for the failure rates. (See Section 3.2.1

for more detail on these tests.)

Image mTRE (pixels) Run time (s) Failure Rate (%)
Pair GD100 GD50 GD30 AGD GD100 GD50 GD30 AGD GD100 GD50 GD30 AGD

a)-a) (DP) 0.02 0.02 0.01 0.01 48.0 24.3 15.2 31.8 1.7% 3.3% 1.7% 1.7%
d)-d) (DP) 0.03 0.02 0.02 0.03 37.7 20.6 13.1 28.2 0.0% 0.0% 1.7% 1.7%
a)-b) (DP) 0.39 0.38 0.39 0.39 106.0 40.7 22.0 35.8 8.3% 5.0% 8.3% 5.0%
a)-c) (DP) 0.26 0.26 0.26 0.25 59.1 36.8 21.1 27.7 5.0% 3.3% 8.3% 6.7%
e)-e) (M1) 0.05 0.03 0.03 0.05 4.6 2.6 1.7 4.5 0.0% 0.0% 0.0% 0.0%
f)-f) (M1) 0.08 0.04 0.05 0.09 2.9 1.5 1.0 2.6 3.3% 1.7% 1.7% 1.7%

MSD-Avg 0.13 0.12 0.12 0.13 42.0 20.5 12.0 21.5 3.1% 2.2% 3.6% 2.8%

(a) Results for the MSD measure

Image mTRE (pixels) Run time (s) Failure Rate (%)
Pair GD100 GD50 GD30 AGD GD100 GD50 GD30 AGD GD100 GD50 GD30 AGD

m)-o) (M2) 0.54 0.76 0.83 0.68 8.7 4.4 3.3 8.3 13.3% 26.7% 46.7% 16.7%
n)-o) (M2) 0.90 1.35 1.47 1.08 9.5 4.8 2.4 8.8 23.3% 38.3% 46.7% 20.0%
m)-n) (M2) 0.10 0.12 0.16 0.11 6.0 3.5 2.2 5.3 3.3% 31.7% 36.7% 5.0%
g)-j) (EO) 1.68 1.99 1.98 1.90 13.6 7.1 4.0 7.7 28.3% 45.0% 55.0% 35.0%
h)-k) (EO) 1.31 1.30 1.30 1.32 42.9 25.5 16.2 38.9 13.3% 30.0% 51.7% 18.3%
i)-l) (EO) 0.07 0.07 0.08 0.07 72.4 37.4 24.1 50.3 6.7% 21.7% 41.7% 6.7%
a)-a) (DP) 0.01 0.02 0.02 0.01 115.3 62.9 37.5 14.7 5.0% 5.0% 8.3% 5.0%
d)-d) (DP) 0.07 0.02 0.02 0.04 110.6 52.4 32.7 19.8 0.0% 5.0% 1.7% 0.0%

MI-avg 0.41 0.48 0.50 0.45 64.5 33.0 20.3 18.5 11.7% 25.4% 36.0% 13.3%

(b) Results for the MI measure

Table 5.1 Experimental Results: Results by image pair, and combined
for each measure (bottom rows). Algorithms: GDX – standard algo-
rithm, using X% of pixels; AGD – Anytime algorithm. Entries shown in
plain font are not significantly different from GD100; those in italic are
ambiguous (see text) and items in bold significantly differ from GD100.

The experimental results are reported in Table 5.1a (for MSD) and 5.1a (for MI).

The tables show the average runtime of each method for each image pair, as well as

for all runs combined. They also show the failure rate and the mTRE. The combined

results for each difference measure are also shown graphically in Figure 5.4. For the

MSD measure, all the algorithms under test show some improvement in speed, with-

out significantly affecting failure rate or mTRE. For this measure, there is little to

distinguish the anytime method from simply reducing the number of pixels. However,

the results for the MI measure highlight the advantages of the anytime method. The
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(a) Graphical summary of results for the MSD Measure
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(b) Graphical summary of results for the MI Measure

Figure 5.4 Graphical summary of complete results. The graphs show
mTRE, running time and failure rate for all runs combined. Results that
are statistically significantly different from the unmodified algorithm are
shown with darker shading.
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quality of the results obtained by simply reducing the number of pixels by a percent-

age is very variable, and frequently involves a statistically significant loss of quality or

reliability. The anytime method delivers significantly faster times without sacrificing

either positional accuracy, or the failure rate. The overall results (bottom row, Ta-

ble 5.1b and Figure 5.4b) show that the anytime method significantly outperformed

simply reducing the number of pixels.
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(a) Results for the MSD measure on digital photo images
(DP)
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(b) Results for the MSD measure on medical images
(M1)

Figure 5.5 Graphical summary of results for MSD measure by image
type. The graphs show running time and failure rate combined by image
class (Digital Photos – DP; Medical images – M1). Results that are sta-
tistically significantly different from the unmodified algorithm are shown
with darker shading. The mTRE is omitted as the differences between
the algorithms are minor.

The results can be further analyzed by grouping the images by their type. Re-

sults grouped by image type are shown in Figures 5.5 and 5.6. The results for the

MI measure (Figure 5.6), in particular, show that an important advantage of the

anytime approach is its adaptability. Note that simply choosing an arbitrary percent-

age of pixels to process gives very different results depending on the image class. In

contrast, the anytime approach was able to align each of these image types without
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(a) Results for the MI measure on digital photo images
(DP)
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(b) Results for the MI measure on earth observation im-
ages (EO)
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(c) Results for the MI measure on medical images (M2)

Figure 5.6 Graphical summary of results for MI measure by image
type. The graphs show running time and failure rate combined by image
class (Digital Photos – DP; Medical images – M2; Earth Observation
images – EO). Results that are statistically significantly different from
the unmodified algorithm are shown with darker shading. The mTRE is
omitted as the differences between the algorithms are minor.



5.4 Conclusions and Future Work 149

significantly increasing the failure rate. The digital photos required only a little more

than 10% of the original running time (Figure 5.6a), and the failure rate did not sig-

nificantly increase for any of the approaches. However, the earth observation images

(Figure 5.6b) seem to be somewhat more difficult to align. When the number of pix-

els is reduced by an arbitrary percentage, the failure rate increases significantly. The

anytime algorithm achieved a significant speedup, but it is not as striking as the dig-

ital photo case. Finally, in the case of the multimodal medical images (Figure 5.6c),

the anytime approach was not able to achieve a statistically significant speedup. It

seems that in this case more pixels are inherently required to successfully align the

images. Reducing the number of pixels used to an arbitrary level causes a severe jump

in the failure rate, more than doubling it when only 30% of the pixels are used. The

anytime method has adapted to that requirement and maintains a low failure rate by

increasing the amount of computation performed.

5.4 Conclusions and Future Work

This chapter proposed the use of deliberation control methods in order to improve the

efficiency of computer vision applications. Such methods were implemented for the

image registration problem and showed a significant improvement in speed without

degrading the quality of the results. In certain cases, the deliberation control approach

significantly outperforms a simple reduction in the number of pixels because it can

selectively use more pixels when needed.

Even when the performance gains are limited, a major advantage of this approach

is that the number of pixels used is determined using a training process. The results

show that arbitrarily selecting a percentage of the image data to use for alignment

will lead to very different results on different classes of images. This method gives a

principled way to determining how much of the image data needs to be processed to

achieve reasonable results.

The key elements of this approach are (1) that the amount of computation to

do should vary during the optimization process, and not be a global parameter of

the entire registration, and (2) that a formal and reliable method is needed to learn

the performance of the algorithm at varying levels of computation on the problem of
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interest. While the dynamic performance profile proved to be a successful method

for doing this in this work, it is not the only way to accomplish this. For example,

there is interesting work presented in [1] which models the performance of a VLSI

circuit layout algorithm with a probabilistic model of the performance profile. This

work also applies the anytime algorithm approach to control of the parameters of

stochastic optimization algorithms. While this clearly goes well beyond the scope

of this thesis, it would be interesting to apply these or similar more sophisticated

deliberation control methods to this problem.
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Chapter 6

Pixel Selection Revisited

As discussed in Chapter 2, direct parameterized image registration is often framed

as the optimization of an image difference measure, D, which is computed between

the fixed image, and the warped, moving image. The computation of the difference

measure is clearly the most expensive part of this process. To save computation time,

D can be computed using only some of the pixels in the image. In Chapter 5, the

question of how many pixels to use was addressed. However, if only some of the pixels

are to be used, it is natural to ask if some pixels are more helpful than others. A

widely used guideline is that pixels of high derivative are most useful for the image

registration process. However, as it is noted in [66] this may cause some performance

degradation.

This chapter formally addresses this performance degradation and investigates the

claim that selecting a maximally informative set of pixels is better than simply se-

lecting them randomly. Scale-space theory tells us that the notion of the derivative

of a sampled signal can only be understood in the context of some scale. It is shown

that the approach to pixel selection exemplified by [66] requires that the image deriva-

tives in question be computed at a scale appropriate for the amount of inaccuracy

in the transformation parameters. If this is not taken into account, then under some

conditions, the use of these pixel selection methods can lead to a deterioration in

performance when compared to randomly selecting an equal number of pixels.

The following section reviews previous work on pixel selection for image regis-

tration. The approach of Dellaert and Collins [66] is particularly relevant to this
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discussion, and is reviewed in detail in Section 6.2. Section 6.3 analyzes the idea of

pixel selection in depth, and proposes improved alternatives to their pixel selection

criterion. As part of the analysis, the effect of derivative scale on the pixel selection

criteria is identified. Finally, Section 6.4 presents experiments that demonstrate that

when pixel selection is used the capture radius of the image difference measure, and

therefore the performance of the optimizer, is dependent on the scale of the derivative

used to compute the selection criterion.

Publications

The majority of this chapter is based on work published in:

[33] Rupert Brooks and Tal Arbel. The importance of scale when select-

ing pixels for image registration. In Proceedings of the 4th Canadian

Conference on Computer and Robot Vision (CRV2007), pages 235–242,

Montreal, Canada, May 2007.

6.1 Previous Work

This question of which pixels to use for image matching was first addressed by Nagel

and Rosenfeld [148] in the context of template matching. They showed that for the

mean absolute difference (MAD) image difference measure, DMAD, defined as

DMAD =
1

N

N∑
i=1

|If (Xi)− Im(W (Xi,φ)| (6.1)

the pixels furthest from the expected value of an average pixel could contribute the

most to the sum and were therefore the ones to examine first. (Here N is the number

of pixels, If (x) and Im(x) are the fixed and moving images respectively, W (x,φ),

is the warp, controlled by the parameters, φ, and the Xi are the pixel positions in

the fixed image.) Other means of bounding the possible resulting values of the image

difference measure with partial data have been proposed (e.g., [69]). These methods

can be incorporated into branch and bound search approaches.
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Most iterative image registration methods are sensitive to the image gradient.

This concept has its roots in the computation of optical flow, where the regions

of smooth image content were found to have an undetermined flow field [17, 105].

This undetermined area had to be filled in with regularization techniques. This has

given rise to a “common wisdom” in the field that better registration performance

can be achieved by using the pixels of high gradient (e.g., [124, 181]). This type of

approach was formally analyzed by Dellaert and Collins [66] in the context of fast

template-based tracking. They developed a criterion for pixel selection based on both

the transform Jacobian, and the image derivative. However, they noted that there

may be some degradation in performance. Buenaposada and Baumela [44] refined

the selection criteria somewhat, but they did not address the issue of performance

degradation at all. Certain problem specific approaches also exist. For example,

Huang et al. [108] speed up the registration of cardiac ultrasound and MR images by

using only those pixels in the ultrasound which contain information relevant to the

registration. It is difficult to see how to generalize that technique to other modalities.

Shortly after the material in this chapter was published, Benhimane [23] put for-

ward an interesting proposal to deal with the same issues in the context of template

based tracking. The motivation for that work was similar to this. Optimization al-

gorithms make an implicit assumption that the warped image can be approximated

by a linear or quadratic Taylor series approximation around the starting transforma-

tion. Benhimane’s approach [23] is to simulate many possible transformations of the

image, and determine to what degree various pixels agree with that assumption and

so can be used to infer the warp parameters. He selects pixels that agree with that

assumption, and rejects pixels that do not. However, he does not deal explicitly with

the role of derivative scale in determining how well the pixels agree with the Taylor

series approximation.

6.2 Pixel Selection for Faster Registration

In [66], the pixel selection problem is analyzed in terms of which single pixel, Ii, will

provide the most new information about the transformation. They consider a least
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squares image difference measure,

DMSD(φ) =
1

2

∑
i

(If (Xi)− Im(W (Xi,φ)))2, (6.2)

and ask which pixel will most reduce the amount of uncertainty in the parameters

of interest. Using a well known argument, given a good enough initial guess of the

parameters, φ0, the minimum of Equation 6.2 can be found by iterating

φ(n+1) = φ(n) −
[
JTJ

]−1
JT (If (X)− Im(W (X,φ))) (6.3)

where J is the derivative of Im(W (X,φ)) with respect to φ:

J =
∂W (X,φ)

∂φ
· ∂Im(W (X,φ))

∂W (X,φ)
(6.4)

Assuming a Gaussian prior distribution with mean 0 and covariance Cinit on φ, then

the covariance matrix of the final parameters Cfinal may be estimated using the law

of propagation of variance,

Cfinal = (σ−2JTJ +C−1
init)

−1, (6.5)

where σ is the expected noise on each pixel. The contribution of a single pixel, i, may

be calculated by keeping only its row in J , thus

Cfinali = (σ−2JTi Ji +C−1
init)

−1 (6.6)

where Ji is the row of J corresponding to pixel i. In [66] it is proposed that the best

pixel is the one that minimizes the expected trace of Cfinal. In the rest of the chapter,

this criterion is referred to as Tr(C).

To select a set of pixels by truly minimizing their expected final covariance matrix

is intractable, since the number of possible combinations is exponential in the number

of pixels. However, in [66] it is demonstrated that simply selecting a random set of

pixels from the best x% of individual pixels works very well, provided that care is

taken to avoid clustering.
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This method for pixel selection is reported to work, and seems to support the

notion that pixels of high derivative are relevant to image registration. However, this

chapter argues that further elaboration of this idea is needed. The criterion used

for pixel selection has not been well explored. New criteria are proposed that are

both more theoretically justified and more computationally efficient. Furthermore,

the optimization process is sensitive to the scale of the derivative used, an issue that

has been ignored up to this point.

6.3 Refinements to Pixel Selection Methods

6.3.1 Pixel Selection Criteria

The criterion used by Dellaert and Collins [66] for selecting pixels is to minimize the

trace of the estimated covariance matrix. The trace of a matrix is the sum of the

squares of its eigenvalues, which for a covariance matrix, is equivalent to the sum of

the squares of the principal radii of its confidence hyperellipsoid. Thus, this measure

will tend to penalize resulting covariance matrices that have one or more long axes.

Recent work on observation selection such as [64] argues convincingly that the

mutual information between an observation and the parameters of interest is the

optimal observation selection criterion. While mutual information between arbitrary

distributions may be difficult to compute, note that if a Gaussian distribution is

assumed for both the observations and the parameters of interest, then minimizing the

determinant of the expected resulting covariance matrix corresponds to maximizing

the mutual information [64]. Interestingly this has been proposed as a criterion for

observation selection much earlier, for example in [202], where it was used for selecting

the next camera position in an active vision system. This criterion may also be more

intuitively satisfying, as it corresponds to the volume of the confidence ellipsoid. Since

any given pixel cannot fully determine the final solution the resulting matrices will be

nearly singular. Thus, most of the confidence ellipsoids generated will have at least

one very long axis. As several observations are being combined, it also makes more

intuitive sense to minimize the volume of each hyperellipsoid, rather than its length.

Thus there are compelling reasons to use the determinant of the expected covariance

matrix, rather than its trace. In the following, this criterion will be referred to as
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Det(C).

Computational issues are also important for any selection technique. After all,

the driving reason for selecting pixels in these applications is to improve performance.

At first glance Tr(C) may appear to require less computation, but this is not the

case. Computing the trace of the covariance matrix requires the following operations

(where n is the number of parameters):

1. A vector outer product O(n2)

2. A matrix summation O(n2)

3. A matrix inversion1 O(n2 log(n))

4. A matrix trace O(n)

Because the determinant of a matrix is the reciprocal of the determinant of its in-

verse, computing the determinant of the covariance matrix requires marginally fewer

operations.

1. A vector outer product O(n2)

2. A matrix summation O(n2)

3. A matrix determinant1 O(n2 log(n))

4. A division O(1)

Thus there is no computational advantage to using Tr(C). Furthermore, matrix

inversions are often numerically unstable, which may make Tr(C) more difficult to

implement.

There are, however, reasonable approximations to both these criteria that require

substantially less computation. Consider that the matrix created by the vector outer

product generally has a strong diagonal component. Both the trace and the determi-

nant of the inverse of a diagonal matrix, M , can be easily calculated. Specifically,

1While classic matrix inversion methods have a complexity of O(n3), recent developments
in matrix algorithms have pushed the theoretical complexity of determinants and inverses near
O(n2 log(n)) [193].
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the determinant is the product of reciprocals of the diagonal elements,

Det(M−1) =
n∏
i=1

M−1
i,i (6.7)

and the trace is the reciprocal of the harmonic sum of the diagonal elements.

Tr(M−1) =
n∑
i=1

M−1
i,i (6.8)

When the matrix JTJ is generally strongly diagonal, these are reasonable approx-

imations of the preceding criteria. This is true for matrix based transforms, see

Figure 4.17. Note that they can be computed directly from J , avoiding the outer

product entirely, as follows

Det(Ci) ≈
n∏
j=1

J−2
ij

(6.9)

Tr(Ci) ≈
n∑
j=1

J−2
ij

(6.10)

where Ci is the covariance matrix corresponding to the i-th pixel, and Jij is the j-th

element of the i-th row of J . Each of these requires only O(n) operations to compute.

In the following the criteria of Equation 6.9 will be identified as as
∏
J−2
i and of

Equation 6.10 as
∑
J−2
i .

Thus it is proposed that the approximation to the determinant,
∏
J−2
i , is the best

criteria to use. It is a reasonable approximation to the mutual information between

the observed pixel and the transformation parameters, and can be computed in O(n)

time.

6.3.2 The Importance of Scale

Dellaert and Collins [66] observed that one problem with their method is that it can

reduce the capture radius of the optimization, but they did not analyze how serious

this problem was, or how it could be controlled. The capture radius refers to the

distance away from the true transformation that the optimization process may be
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started and can still be expected to converge to the correct solution. In conceptual

terms, the function to be optimized forms a “pit” around the true minimum. Within

this pit, an optimization algorithm can “slide down” to the solution, but outside this

region it may fail to converge to the solution.

This problem arises because of the nature of the pixel selection method. Observe

that any of these pixel selection criteria is determined completely by the row of J that

corresponds to the pixel in question. In turn, J is computed from the image deriva-

tives. However, the derivative of a sampled signal is not a clearly defined quantity. It

is dependent on the aperture through which the signal is viewed, or in other words,

on the scale at which the signal is viewed [184].
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Figure 6.1 A derivative varies with scale.

Figure 6.1 illustrates this property, and also shows that the scale of a derivative can

be viewed as determining the range over which the linear approximation to the signal

will be valid. All the components of this framework rely on this linear approximation

being valid to work properly. The law of propagation of variance, used to develop

Equation 6.6 holds in the linear case and relies on the linearization of the cost function

to be valid. All optimization algorithms used in this thesis rely in one way or another

on the second order Taylor series being a close approximation to the cost function

to work properly. If the minimum being searched for is outside the valid range of

all the derivatives being used to compute the search direction, it is unlikely that an

optimization method that relies on these derivatives will find it.

It is hypothesized that using one of these pixel selection methods may improve

performance, provided that the starting estimate of the transformation is not “too far”
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from the correct one. The definition of “too far” in this case, will be directly related to

the scale of the derivative used. To quantify this idea requires a measure of the distance

between transformations. The one proposed by Van de Kraats et al. [190] is used, as

discussed in Section 3.2. This measures the distance between two transformations by

computing the mean difference in position of a set of corresponding points warped

by each transformation. Based on this, it is proposed that the scale of the derivative

should be equal or greater to the expected distance of the starting position from the

true solution or the optimization may not converge correctly.

6.4 Experiments

The experimental verification of this proposal has three parts. First the effect of

each of the pixel selection methods in Section 6.3.1 on two common image difference

measures is examined, and their running times are compared. Secondly, the role of

the scale of the derivative when pixel selection using the method of [66] is applied with

the derivative computed at different scales is investigated. Finally, these hypotheses

are tested to see if they have the expected effects on actual image registrations by

registering a number of images and observing the performance of each approach.

6.4.1 Implementation

As discussed in Section 3.1, an image registration system has been implemented using

the Insight Toolkit [109]. To this system, the ability to select a set of pixels and use

only that selected set in the image difference measure computation has been added. In

the following experiments, two image difference measures have been used, the mean

squared difference (MSD), described in Section 3.1.2, and the mutual information,

described in Section 3.1.4. (The Mean Squared Difference measure was used for the

original analysis in [66]).

To eliminate the possibility that the results could be skewed by quirks of the opti-

mization algorithm, two different optimization algorithms were used. The first is the

simple gradient descent optimizer from the ITK library [109] described in Algorithm 1

which corresponds to the type of optimizer expected when the original analysis in [66]

was done. The second optimizer was Powell’s method [156] (see Section 3.1.10) which
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does not require the derivative of the cost function. Using a derivative free approach

provides an interesting confirmation that these results will generalize to a wide variety

of optimization algorithms.

6.4.2 Pixel Selection Criteria

Scores are assigned to pixels as described in Section 6.3.1. Once each pixel has been

assigned a score, however, the actual selection must introduce some randomness,

to avoid clustering of the pixels [66]. All the pixels are ranked by their score and

grouped into 5% blocks. Pixels are then chosen randomly from the best 5%, followed

by choosing from the next 5% and so on.

Each of these selection methods requires a prior estimate of the accuracy of the

transformation. In the absence of other information, it was desirable to assign equal

accuracies to each element. However, a standard deviation of one radian in rotation

represents a very different level of accuracy than one pixel on a translational compo-

nent. With projective transformations, the effects of some parameters are as much

as four orders of magnitude larger than others. The optimal scale factor described

in Section 4.5 was used to linearly rescale all the parameters so that unit step in the

parameter space caused an average movement of one pixel width in the image space.

In effect, each transformation W (x,φ) was reparameterized as W (x,φ = M · ψ)

where M is a diagonal matrix equal to

Mjj =

√∑
i

J2
ij. (6.11)

Then the prior covariance matrix was set to the identity.

Figure 6.2 shows the resulting pixel scores and a selection of 1% of pixels for a

typical digital camera image2, undergoing a projective transformation. While there

are some differences between each pixel scoring method, the selected pixel sets are

quite similar in each case. The main visual difference is that the diagonal approxi-

mations,
∏
J−2
i and

∑
J−2
i are somewhat faded in the center. This is due to certain

components of J , particularly the rotation and elation parameters, being relatively

2Image from sample images provided by K. Mikolajczyk http://www.inrialpes.fr/lear/
people/Mikolajczyk/.

http://www.inrialpes.fr/lear/people/Mikolajczyk/
http://www.inrialpes.fr/lear/people/Mikolajczyk/
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(a) image (b) Tr(C) scores (c) Det(C) scores

(d)
∑
J−2

i scores (e)
∏
J−2

i scores

(f) Tr(C) selected 1% pixels (g) Det(C) selected 1% pixels

(h)
∑
J−2

i selected 1% pixels (i)
∏
J−2

i selected 1% pixels

Figure 6.2 Pixel scores and selected pixels for each selection criterion.
For images b-e, darker is better. For images f-i, selected 1% of pixels are
shown in white.
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larger towards the edge of the image, an effect that is more pronounced when the

off-diagonal elements are not considered.

The main argument for recommending the use of
∏
J−2
i as a selection criterion,

is that it is faster to compute. The computation times to generate each of these pixel

selections are shown in Table 6.1. This criterion is significantly faster to compute.

The original criterion of [66], Tr(C), is remarkably slow, although this may be partly

due to inefficiencies in the matrix library used3.

Tr(C) Det(C)
∑
J−2
i

∏
J−2
i

34.3 s 7.40 s 2.25 s 1.84 s

Table 6.1 Computation times to generate the pixel selections using each
criterion.

To further investigate the differences between each approach for pixel selection,

the value of the image difference measure was computed between an image and it-

self at numerous points in the transformation parameter space along a vector passing

through the parameters representing the identity transformation. The resulting dif-

ference measure values for a transformation consisting of translation only are shown

in Figure 6.3. Note that the “ripples” in the cost function are due to interpolation

artifacts.

For each of these calculations, 1% of the pixels were used and the derivative scale

was 5 pixels. The different criteria give extremely similar results, as could be antici-

pated from the fact that the pixels chosen are extremely similar in Figure 6.2. In all

cases, the cost function has a much steeper pit near the optimum when using pixel

selection, but the capture radius is much smaller than when pixels are selected ran-

domly. This narrowness of the capture radius is less pronounced if the transformation

is more complex than just a translation. For example, Figure 6.4 shows the same

cost functions, but here the vector through the transformation space has an angular

component. As a rotation of the image moves some pixels more than others, the effect

is to smooth the cost function somewhat. However, the valley in the cost function

remains much sharper than if the pixels are chosen randomly. Indeed, if the pixels

3The matrix was inverted using the VXL library http://vxl.sourceforge.net, which defaults
to using singular value decomposition for inversion.

http://vxl.sourceforge.net
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(b) Mutual Information values using different pixel selection criteria (1% of pixels)

Figure 6.3 Image difference measure values for pixels selected with
different criteria. Case 1: Translation

are chosen randomly, the cost function has exactly the same shape as when using all

the pixels, and is merely somewhat noisier.

6.4.3 Role of Derivative Scale

The second set of experiments addresses the shape of the cost function as the scale of

the derivative is varied. Once again, the cost function has been computed for a series

of points in the transformation space, which pass through the origin. Figure 6.5 shows

this for the original selection method in [66], at derivative scales of 1, 5 and 10 pixels.

As hypothesized, when the scale of the derivative increases, the cost function tends

to flatten out and approach the shape of the cost function using randomly selected

pixels. The capture radius clearly increases with the scale of the derivative, therefore

it is essential to consider how large the initial misregistration of the images will be
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(b) Mutual Information values using different pixel selection criteria (1% of pixels)

Figure 6.4 Image difference measure values for pixels selected with
different criteria. Case 2: Translation + Rotation

when a pixel selection approach is used.

6.4.4 Image Alignments

To test these hypotheses under real image registration conditions, a number of typi-

cal image registration examples were performed using randomly selected pixels, pixels

selected using the original method, and the proposed simplification. One hundred

randomly generated transformations were used as starting positions. Each starting

position was composed with the true transform, and the result used as a starting posi-

tion for the registration. A run was considered to have failed if either the optimization

process aborted in an error condition, or the final transformation parameters were a

distance of more than five pixels from the true parameters.

When registration was successful, accuracy of the different methods is comparable.
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Figure 6.5 Image difference measure values for pixels selected using
different derivative scales.

The main variation between the different approaches is their rate of failure. The fol-

lowing figure (6.7) shows the cumulative number of failures when the transformations

are considered in order, starting closest to the distance from the identity transforma-

tion. As all the approaches were tested from the same starting positions, the results

are directly comparable.

For the MSD measure, the graffiti image was registered using a projective trans-

formation to another image of the same scene, taken from a different camera position

(shown in Figure 6.6). Figure 6.7a shows the results of the experiment. The graphs are

the cumulative number of failures moving through the list of transformations from the

smallest (in terms of distance from the identity) to the largest. As hypothesized, when

using pixel selection, the algorithm is more prone to failure the further the starting

position is from the true optimum. Furthermore, the range over which the optimizer
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(a) Graffiti I (b) Graffiti II

Figure 6.6 The graffiti image pair.

can converge to the solution tends to increase with the scale of the derivative.

Figure 6.7b shows similar results, but using the approximate criterion,
∏
J−2. As

expected from the results of the previous experiment, these results are quite similar

to those for the Tr(C) method.

Finally, Figure 6.7c shows the results when Powell’s optimization method was

used, with the Tr(C) criterion. These results show the influence of the scale of the

derivative even more strikingly than the results with the gradient descent optimizer.

For the MI measure, slices extracted from previously registered medical imaging

volumes4 were used. The first group of images ({6.8a, 6.8b, 6.8c}) are 3D Xray

(3DRX), Computed Tomography (CT) and Magnetic Resonance (MR) images of a

cadaver spine, and the second group are Magnetic Resonance images of a human

brain using Proton Density (PD), T1-Weighted (T1) and T2-weighted (T2) imaging

sequences. These images were registered to each other using a rigid transformation.

As the images in each group ({6.8a, 6.8b, 6.8c} and {6.8d, 6.8e, 6.8f}) are the

same size, the results can be combined by group. The results using a gradient descent

optimizer, and the Tr(C) criterion, are shown in Figure 6.9. Results for the other

selection criteria, and Powell’s optimizer, are extremely similar, and have been omitted

for brevity.

The main point of the work presented in this chapter was to question the con-

ventional wisdom that pixels should be selected using some property based on their

derivative. Overall, there appears to be a significantly higher failure rate when using

4Images {6.8a, 6.8b, 6.8c} from the datasets described in [190] and images {6.8d, 6.8e, 6.8f} are
courtesy Montreal Neurological Institute.
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(c) Registrations of Graffiti images using Powell’s method and the Tr(C) criterion

Figure 6.7 Cumulative failures of registration of the graffiti image pair
with gradient descent (a, b) and Powell’s method (c). σ is the scale of
the derivative.
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MI Group 1

(a) 3DRX (b) CT (c) MR
MI Group 2

(d) PD (e) T1 (f) T2

Figure 6.8 Images used for MI registrations.

pixel selection approaches, and one may ask if it is worthwhile to select pixels at all.

These experiments show that using pixel selection methods is very sensitive to the

scale of the derivative used to compute the selection criteria, and for many cases,

selecting pixels randomly is as good or better.

However, under certain conditions, for example, in the case of MI Group 2 (see the

3rd row of Table 6.2), the use of selected pixels does result in superior performance

when compared with using randomly selected pixels. Furthermore, the timing data

indicates that, when the conditions of the registration problem make it appropriate,

there may be additional computational benefits to using pixel selection methods.

Table 6.2 shows the mean run times and mean number of iterations for each scale

of selection, considering the cases where (1) the process starts close to the optimum

(i.e., within a distance of five pixels for the MSD case, and five mm in the MI cases)

and (2) both the original and pixel selection methods succeeded. The registration

process runs slightly faster when pixel selection is used with MI. This may be due

to requiring fewer iterations of the optimization algorithm than are required by a

random selection of pixels.
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(a) Results for Image Set 1 {6.8a, 6.8b, 6.8c} using gradient descent and Tr(C) criterion
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Figure 6.9 Cumulative failures for registration of MI groups 1 and 2

6.5 Conclusions

This chapter analyzed the use of pixel selection methods to speed up direct image

registration. The
∏
J−2
i criterion for selecting optimal pixels was proposed and shown

to be better justified and faster than the criterion currently used.

The widely accepted notion that image registration performance can be improved

by computing the image difference measure on a selected subset of pixels (i.e., rather

than a random subset) has been tested. It is found that this is only true when

very particular limitations on the starting positions of the optimization can be met.

Specifically, this work examines the important role of the scale of the derivative in

the analysis, a point that has been generally overlooked in the literature. When

using a pixel selection method, the capture range of the optimization algorithm will

be reduced to be approximately the same size as the derivative scale. Should these

conditions be met, pixel selection approaches may give additional speed advantages
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Image set Random σ = 1 σ = 5 σ = 10
time iter time iter time iter time iter

Graf. (MSD) 1.58 15.4 2.12 18.2 2.13 17.1 2.14 20.4
MI 1 1.91 15.1 1.33 14.8 1.56 17.0 1.53 15.4
MI 2 1.16 13.7 0.92 12.9 1.03 12.9 0.92 12.8

Table 6.2 Mean time and number of iterations for selected registrations.
The selected cases are where (1) the process starts close to the optimum
(i.e., within a distance of five pixels for the MSD case, and five mm in the
MI cases) and (2) both the original and pixel selection methods succeeded.
The registration process runs slightly faster when pixel selection is used
with MI.

superior to those achievable by simply selecting pixels randomly.

It is interesting to note that the method proposed in [23] does not deal explicitly

with the issue of scale, or address whether selected sets of pixels should be different

for large or small motions. In the tracking context, good convergence properties are

more important than precision. The work presented in this chapter suggests that a

different set of pixels might be necessary for precise registration, as opposed to the

set required for convergence from a far starting position. It would be interesting in

future to explore this aspect of the problem.
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Chapter 7

Generalizing Inverse Compositional

and ESM Image Alignment

As discussed in previous chapters, the image registration problem is usually formu-

lated between a pair of images, such that one image is held fixed, and the other

is warped by the transformation. The problem can then be expressed as the opti-

mization of some image difference measure over the transformation parameters. This

optimization problem has some special characteristics. One is that it is easy to imag-

ine interchanging the roles of the images. Instead of warping the moving image, the

reference image could be inverse warped by an equivalent amount. Another special

characteristic of this problem is that the optimization step can be done either addi-

tively, by adding an update to the warp parameters, or compositionally, by composing

the warp parameters. (A compositional step is equivalent to warping the image with

one set of parameters, and then warping the result with another set.)

The special structure of the registration optimization problem has been exploited

by a number of authors [11, 12, 22, 90, 114, 139, 140, 172] to develop efficient image

registration algorithms. Briefly, the gains arise from computing the derivative of the

image difference measure with respect to the parameters of the warp of the fixed image.

In the case of the inverse compositional method, for example, computing the derivative

in this way saves computation time since much of the calculation does not change and

can be cached from step to step. However, all of these gains have come at the expense

of greater difficulty in implementation, or limiting the domain of application. In this
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chapter, it is shown that the fixed image transformation parameters can be viewed as

a different parameterization of the moving image transformation parameters. Thus

derivatives computed relative to one parameterization can be converted to derivatives

relative to another parameterization by using the familiar chain rule. This allows

these efficient image registration methods to be generalized to a much wider range of

cost functions and optimizers than they are currently being used with. Two of the

most successful efficient registration techniques of this type, the inverse compositional

method [11, 12], and the efficient second order method [22, 139, 140], are generalized

in this way.

This chapter begins with a discussion of the previous work that lead up to the de-

velopment of the two methods that will be examined in detail. Each of these methods

is then discussed in depth, in Sections 7.2, and 7.3. The generalized approach which

applies to both of these algorithms is described in Section 7.4. This is followed by a

discussion of the implementation in Section 7.4 and the experiments in Section 7.6.

The experiments show that the generalized IC method is just as fast as the original,

and in certain cases proves much more reliable. The generalized ESM method shows

an improvement in reliability over the classical method, rather than an increase in

speed. Finally, the overall conclusions are discussed in Section 7.7.

Publications

The majority of this chapter is based on work being reviewed for publication as:

[34] Rupert Brooks and Tal Arbel. Generalizing inverse compositional and

ESM image alignment. International Journal of Computer Vision, 2008.

SUBMITTED FOR PUBLICATION.

Early work on this problem was published as:

[32] Rupert Brooks and Tal Arbel. Generalizing inverse compositional image

alignment. In Proceedings of the 18th International Conference on Pat-

tern Recognition (ICPR2006), volume 2, pages 1200–1203, Hong Kong,

August 2006.
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7.1 Previous Work

The image registration problem has two special characteristics which have allowed

the development of efficiency improvements. First, a warp of the moving image can

be considered equivalent to an inverse warp of the fixed image. Therefore computing

a warp for the fixed image is just as valid as warping the moving image. Thus the

image registration problem can be generalized to:[
φfopt

φmopt

]
= argmin

φf ,φm

(D(If (W (X,φf )), Im(W (X,φm)))) , (7.1)

where φf is the parameter vector of a warp of the fixed image, and φm is the parameter

vector of a warp of the moving image. This optimization has many solutions, as there

are an infinite number of possible pairs of φf ,φm that are equivalent.

Second, many warps that are of interest can be both composed and inverted. Thus

it is possible to imagine applying a warp update step to the fixed or moving warp

parameters by either adding it to the existing parameters, or by composing it with

the existing parameters.

As a result of these two special characteristics there are four ways the update step

can be combined with the current warp parameters [11, 12]. While some of these had

been used by various authors for efficient registration, Baker and Matthews [11, 12]

were the first to identify and categorize them all based on these properties of the image

registration problem. In what follows, the terminology and classification proposed

in [11, 12] will be used to describe these earlier methods.

In the classical, or forward additive, approach [18, 136] the cost function is ex-

pressed as it has been throughout this thesis so far, namely,

D(φ(n+1)) = D(If , Im(W (X,φ(n) + ∆φ(n)))), (7.2)

and it is optimized in the usual way based on additive steps, i.e., φ(n+1) = φ(n) +

∆φ(n). This is a standard unconstrained optimization problem and a wide range of

optimization algorithms may be applied to it.

The first efficient alternative exploiting the symmetries of the problem was the

inverse additive approach proposed by Hager and Belhumeur [90]. They assumed
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that the images were approximately aligned, so If ≈ Im(W (X,φ)). The image

gradient ∇XIm, can then be approximated from the gradient of the fixed image, as

follows

∇XIm ≈ ∇XIf
[
∂W (X,φ)

∂X

]−1

They could then develop an efficient update step by replacing ∇xIm with this approx-

imation. However, this approach was only efficient if the warp Jacobian matrix could

be factorized and this placed limiting restriction on the warps that could be used.

Shum and Szeliski [172] proposed the forward compositional approach. In this

approach, the cost function was expressed as

D(φ(n+1)) = D(If , Im(W (W (X,∆φ(n)),φ(n)))),

and the update has to be performed compositionally, i.e., φ(n+1) = φ(n) ◦ ∆φ(n).

This approach provided some efficiency gains because at each step the current ∆φ is

zero, and so the Jacobian, ∂W (X,∆φ)
∂∆φ

can be precomputed and cached. However, the

gradient of the warped moving image still has to be computed at each step.

In 2001, Baker and Matthews [11] identified and named these three approaches,

and proposed a fourth. This fourth approach, the inverse compositional approach,

is shown to be the most efficient and general of all. In [12], they analyze all these

approaches in depth. They show that they are all equivalent to first order, and

therefore all of them can be expected to converge. They also shown that the inverse

compositional approach is more efficient, and less restrictive than the inverse additive

or forward compositional methods. In the following section, the inverse compositional

method will be described in detail.

7.2 Inverse Compositional Method

Baker and Matthews [12] observed that an update step ∆φf for the fixed image can be

computed efficiently when φf is kept at the identity warp. Because of the equivalence

between the transformation of the fixed and moving images, this update of φf is
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equivalent to updating φm using

φm(n+1)
= φm(n)

◦
[
∆φ−1

f(n)

]
This computes the update to φm by inverting and composing the update step, ∆φf ,

with the current φm (see Algorithm 5).

Algorithm 5 Inverse Compositional Image Alignment

Set start position φm0 ; φf = 0; iteration counter n = 0
Compute the derivative of the fixed image with respect to the warp parameters,
JTf = ∇φf

If (φf )
Repeat

ComputeD(φf ,φm(n)
),∇φf

D(φf ,φm(n)
), and/orHφf

D(φf ,φm(n)
) as needed by

the specific optimization technique.
Compute update step ∆φf from the results of the previous step.
Set φm(n+1)

= φm(n)
◦∆φ−1

f(n)
and n = n+ 1

Until convergence criteria reached

The IC method is significantly faster than the forward additive method because

the search is always performed around the zero warp of the fixed image, and therefore

the Jacobian of the fixed image with respect to the parameters, Jf = ∇φf
If (φf ), and

the Gauss-Newton approximation to the Hessian, Hφf
D(φf ,φm) = JTf Jf , may be

precomputed. Clearly, this relies on composition and inversion being valid operations

on warps – i.e., that the warps form a group. This is true for the matrix based trans-

formations (Section 3.1.6) and it has been shown in [143] that, even with approximate

inverse and composition operators, these relationships will work.

This idea has been applied in several contexts, including active appearance mod-

els [143], and 3D medical data [2, 13]. Extensions to the method have incorporated

intensity changes into the cost function [19] and application of the approach to mutual

information [32, 71]. However, in all cases, the update step must be compositional.

This poses a problem because most widely available optimization methods are addi-

tive. Thus, using the IC method requires modifications to the optimization algorithm.

In previous iterations of the work presented in this chapter, the method was extended

to general optimizers and cost functions, but this extension still required careful in-

teraction with the optimizer update step. The advantages of the IC method all relate
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to how efficiently it allows computation of ∇φD, and the requirements for changes

to the optimization algorithm only increase the difficulty of its implementation, and

limit its applicability.

7.3 Efficient Second Order Minimization

While Baker and Matthews identified the different ways in which the update step

could be computed, they did not consider combining these update steps. A method

that does this the Efficient Second order Minimization (ESM) which was proposed by

Malis and Benhimane [22, 139, 140] for tracking and visual servoing. This method

does not speed up the computation of D. In fact, it may slow it down as more

computation is done at each step. Instead, it achieves its efficiency by reducing the

number of optimization steps required to find the optimum.

The ESM method (Algorithm 6) is based on the observation that due to the

symmetry of the image registration problem, the Gauss-Newton approximation to

the Hessian could be calculated with respect to either φf or φm. The update step

from each would be slightly different. They show that the approximate Hessian given

by the average of the two approaches is a superior approximation to the one from

either approach alone. Thus they use an update step of

∆φm(n)
= −(J̄T J̄)−1J̄T

[
If − Im(φm(n)

)
]

(7.3)

where J̄ is,

J̄ =
Jm − Jf

2
= ∇φmIm(φm)−∇φf

If (φf ), (7.4)

the average of the Jacobians computed with respect to either set of transform param-

eters. A similar insight has been proposed in [114], without addressing the generality

of Equation 7.4.

As originally presented, the ESM method could only be applied where a Gauss-

Newton approximation is being used. However, it is this author’s opinion that the

deeper insight of the ESM method is that the update steps computed using the fixed

image, and the one using the moving image are not identical, and that the combination

of both may prove superior to either one.
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Algorithm 6 Efficient Second Order Image Alignment

Set start position φm0 ; φf = 0; iteration counter n = 0
Compute Jf = ∇φf

If (φf )
Repeat

Compute D(φf ,φm(n)
), Jm = ∇φmIm(φm), ∇φf

D(φf ,φm(n)
), and

∇φmD(φf ,φm(n)
).

Compute J̄ using Equation 7.4.
Compute update step ∆φm(n)

based on Equation 7.3
Set φm(n+1)

= φm(n)
◦∆φm(n)

and n = n+ 1
Until convergence criteria reached

A more serious limitation is that, as discussed in [22, 139, 140], the ESM method

can only be applied in very specific circumstances. For it to work, combining the

two Jacobians using Equation 7.4 must be a meaningful thing to do. This implies

that the warp must have the property that φ−1 = −φ. This is not true in general.

However, it is true in the neighborhood of the identity warp, when the warp forms

a Lie group and is parameterized using its exponential map [140]. Thus, they must

express the warp using that parameterization, and compute the J ’s for both the fixed

and moving image around the identity warp. This also requires the use of the forward

compositional approach for Jm. This limits the applicability of this approach. It

may be undesirable to use the exponential map parameterization, as it requires an

evaluation of a matrix exponential, which can be difficult [146]. Furthermore, while

moving along the exponential map is a geodesic on the transformation manifold, it

generally induces a relatively curved path in the image space, which can make the

optimization more difficult.

In the following section, it is shown that the symmetry in the image registration

problem means that the moving image warp can be considered as a smooth function of

the fixed image warp. As a result, gradients with respect to one set of parameters can

be converted to gradients with respect to the other. This allows us to generalize both

methods to use additive optimizers, and any parameterization of the transformations

that allows composition and inversion.
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7.4 Generalized Approach to IC and ESM

The IC and ESM methods for efficient image alignment have special characteristics

which make their widespread adoption difficult. The IC approach maps update steps

from the space of φf to the space of φm using inversion and composition. This

requires customization of any optimization algorithm intended to be used. The ESM

approach combines the forward and inverse Gauss-Newton steps, but to do so relies

on the transformation having the property that φ−1 = −φ. This is undesirable for

similar reasons: such parameterizations are not universally available, and may present

implementation difficulties.

Note that both the IC and ESM approaches rely on the special equivalence that

exists in the pairwise image registration problem. Specifically,

D(If (W (X,φf )), Im(W (X,φm))), (7.5)

is equivalent to

D(If (X), Im(W (W (X,φ−1
f ),φm))). (7.6)

When the composition and inversion operations are smooth and differentiable –

something that is implied already by the existing requirements to use either of these

methods – then there is a one-to-one differentiable mapping between warps of the

fixed image and warps of the moving image. At a particular step n, the moving image

warp can be expressed as a function of the fixed image warp:

φm(n+1)
(φf(n)

) = φm(n)
◦ φ−1

f(n)
,

which reparameterizes the cost function in Equation 7.2 in terms of φf :

D(If (X), Im(W (X,φm(n)
(φf(n)

))).

The inverse compositional method provides an efficient way of computing ∂D
∂φf

,

but standard optimization methods require the derivative with respect to φm, ∂D
∂φm

.



7.4 Generalized Approach to IC and ESM 179

Expressing φf as a function of φm, and applying the chain rule yields:

∂D

∂φm
=

∂D

∂φf
· ∂φf
∂φm

. (7.7)

The Gauss-Newton approximation to the Hessian is the sum of the outer products

of the gradient of each pixel with respect to the transformation parameters.

Hφf
D(φf ,φm) u JTf Jf =

∑
i

∂Ifi

∂φf

T

· ∂Ifi

∂φf
, (7.8)

where Ifi
is pixel i of If . Each of these partial derivatives can be converted using the

chain rule as above,
∂Imi

∂φm
=
∂Ifi

∂φf
· ∂φf
∂φm

,

giving,

HφmD(φf ,φm) ≈
∑
i

∂φf
∂φm

T ∂Ifi

∂φf

T

· ∂Ifi

∂φf

∂φf
∂φm

,

which simplifies to

HφmD(φf ,φm) ≈ ∂φf
∂φm

T∑
i

[
∂Ifi

∂φf

T

· ∂Ifi

∂φf

]
∂φf
∂φm

. (7.9)

Thus, it is possible to convert the gradient and Hessian of the image difference measure

with respect to the fixed image warp parameters to be derivatives with respect to the

moving image warp parameters as long as it is possible to compute the Jacobian

matrix,
∂φf

∂φm
.

7.4.1 Generalized Inverse Compositional Alignment

The proposal for generalizing the IC algorithm is to use these methods to convert the

derivative and Gauss-Newton approximation to the Hessian from being with respect

to the fixed image warp parameters to being with respect to the moving image warp

parameters. These converted derivatives can be provided to any standard optimization

technique, without requiring any special modifications of the optimization algorithm.

In particular, the update step is now additive, which permits using standard additive
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optimizers. The resulting generalized algorithm is shown in Algorithm 7.

Algorithm 7 Generalized Inverse Compositional Image Alignment

Set start position φm(0); φf = 0; iteration counter n = 0
Compute Jf = ∇φf

If (φf )
Repeat

Compute D(φf ,φm(n)
), ∇φf

D(φf ,φm(n)
) and Hφf

D(φf ,φm(n)
) as required

Convert ∇φf
D(φf ,φm(n)

) to ∇φmD(φf ,φm(n)
) and Hφf

D(φf ,φm) to
HφmD(φf ,φm(n)

) using Equations 7.7, 7.9
Compute update step ∆φm using the chosen optimization method.
Set φm(n+1)

= φm(n)
+ ∆φm(n)

and n = n+ 1. Note that this is an additive step.
Until convergence criteria reached

One may ask how this generalization will affect the steps taken by the optimization

process. The steps taken by this algorithm will differ from the original IC algorithm.

The original algorithm – when not using a single Gauss-Newton step – moves along

a straight line in the φf space. This line is generally curved if it is converted into the

φm space. The generalized approach moves along a straight line in φm space. This

line is tangent to the curve produced by the original algorithm (See Fig. 7.1).

7.4.2 Generalized ESM

The ESM method can also be generalized using Equations 7.7–7.9. Any derivative

with respect to φf can be converted to the space of φm before averaging it with the

corresponding derivative computed relative to φm
1. It is no longer necessary to restrict

the parameterization so that Equation 7.4 is valid: any parameterization where the

IC method will work is suitable. This leads to a generalized ESM algorithm shown in

Algorithm 8.

It is more difficult to compare the steps taken by the generalized ESM algorithm

to the ones taken by the original algorithm. In the exponential map based param-

eterizations used by the original implementation [22, 139, 140],
∂φf

∂φm
= −I and the

steps are identical to those taken by Algorithm 6. In the more general cases to which

it can now be applied the different parameterizations give rise to different derivatives,

1However, the name “Efficient Second Order Method” may become a misnomer when it is gen-
eralized in this way, as it is only a second order approximation when the Jacobian pseudoinverse is
being used.
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Algorithm 8 Generalized “ESM” Image Alignment

Set start position φm0 ; φf = 0; iteration counter n = 0
Compute Jf = ∇φf

If (φf )
Repeat

Compute D(φf ,φm(n)
), ∇φm(n)

D(φf ,φm(n)
), ∇φf

D(φf ,φm(n)
),

∇φmD(φf ,φm(n)
) and Jm(φm(n)

) as required
Convert Jf to the space of Jm using Equation 7.9 and average with Jm to form
J̄ .
Compute compute update step ∆φm(n)

using the chosen optimization algorithm.

Set φm(n+1)
= φm(n)

+ ∆φ−1
m(n) and n = n+ 1

Until convergence criteria reached

different Gauss-Newton hyperplane approximations (in Fig. 4.8) and thus different

steps. The importance of this generalization is that the ESM method can now be

applied in a much wider set of contexts than before.

φf -space φm-space

A B

C

Figure 7.1 The cost function with respect to the fixed image param-
eters (left) and the moving image parameters (right) is related with a
non-linear mapping. Thus a linear movement (A) of the fixed image pa-
rameters, φf , can be transformed to a (generally curved) movement (B)
of the moving image parameters, φm. With the proposed method, it is
the tangent to the curve at its beginning that is mapped, and the motion
is linear (C) in the moving image parameter space.

The
∂φf

∂φm
matrix is key to the implementation of both methods. Appendix F

contains analytical evaluations of this matrix for 2D homographies, and 3D rigid

transformations. The generalized approaches rely on the calculation of the
∂φf

∂φm
ma-

trix at each iteration, followed by a matrix-vector multiplication in the case of the
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derivative, and two matrix multiplications in the case of the approximate Hessian.

These operations are of order O(n3), where n is the number of parameters. For typ-

ical image alignment problems in 2 and 3 dimensions, the warp typically has tens of

parameters while the images typically have thousands of pixels. Thus these opera-

tions are not the computational bottleneck in the process. In addition, the original IC

method included an inversion, and a composition of the warp parameters, which are

operations of equivalent complexity. Therefore, the generalized methods retain the

advantages of the IC and ESM methods, which are, respectively, faster and more ac-

curate calculation of the update step. The generalized methods avoid the restrictions

on optimization technique and transform parameterization that affected the original

methods, without incurring a greater computational cost.

7.5 Implementation

To assess the effectiveness of the generalized approach, it has been implemented in

the standard multiscale image registration framework (Section 3.1). Each generalized

approach described above has been implemented, along with the classical, forward

additive method. Each these has been implemented for three widely used image

difference measures (MSD, NCC and MI), and three widely used optimizers (gra-

dient descent, BFGS, and Newton-Raphson). For comparison purposes, an original

IC method which takes steps compositionally in the parameter space has also been

implemented. For the case of the mean squared difference measure and the Newton-

Raphson optimizer, this implementation of the original IC method is nearly identical

to the method described in [12], which provides a meaningful base-line comparison

for this work. For the other difference measure and optimizer contexts, this original

IC implementation is not precisely comparable to other published work, as it uses

a different optimization strategy compared to [32] and a different MI formulation

than [71]. Nevertheless, it provides an interesting check that this generalization has

not lost critical elements of the method.
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7.5.1 Image Difference Measures

To use an image difference measure in an IC or ESM context it must be possible to

compute the derivative and Hessian with respect to φf rather than φm. For the MSD

and NCC measures, this is straightforward. The expressions for these measures can

be found in Sections 3.1.2 and 3.1.3. Note that in both cases, the roles of the fixed

and moving images are totally symmetric; thus, obtaining ∂D
∂φf

and ∂2D
∂φ2

f
is easily done

by reversing the roles of If and Im in the expressions for each measure.

Mutual Information

The mutual information implementation used in this thesis is based on the efficient

formulation of [185]. As described in Section 3.1.4 this method accumulates a Parzen-

windowed model of the joint distribution,

Pkl(φf ,φm) =
N∑
i=1

1

N
β0

(
k − If (W (Xi,φf ))− bf0

df

)
β3

(
l − Im(W (Xi,φm))− bm0

dm

)
(7.10)

and its derivatives

∇φPklp(φf ,φm) =
N∑
i=1

1

dmN

∂β3

(
l − Im(W (Xi,φm))−bm0

dm

)
∂Imi

· ∂Imi

∂φ
. (7.11)

over all the pixels.

Unfortunately, this formulation is asymmetric. Because a 3rd order B-spline is

differentiable, the gradient of the joint histogram with respect to φm, ∇φPkl(φ), can

be easily computed. The derivative with respect to φf however, involves the derivative

of a zero-th order B-spline, which is undefined.

To overcome this issue, the MI implementation was modified to compute this

gradient by reversing the roles of the reference and the fixed image for the gradient

part of the calculation only. That is, an additional joint distribution,

Qkl(φf ,φm) =
N∑
i=1

1

N
β0

(
k − Im(W (Xi,φm))− bf0

df

)
β3

(
l − If (W (Xi,φf ))− bm0

dm

)
(7.12)
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is accumulated, along with its derivatives in terms of φf instead of φm. Then DMI is

computed in the original way, but its gradient and Hessian are computed by substi-

tuting Qkl for Pkl, and swapping the roles of the summation indexes k and l. This has

the effect of increasing the computational load somewhat to compute the derivatives

with respect to φf . Computational savings are still obtained, but they are not as

large as they would be in a symmetric formulation of MI.

7.5.2 Optimization

The registrations have been performed using three optimizers: a gradient descent,

a Newton-Raphson method, and a quasi-Newton method, which are broadly repre-

sentative of the types of optimization algorithms being used in image registration

currently.

Gradient descent methods, despite having a number of known problems, are still

widely used due to their simplicity. All such methods operate by taking steps in the

direction of the gradient, and the methods are mainly differentiated by how the sizes

of these steps are chosen. A trust-region approach has been used to adapting the step

size in the gradient descent method, as described in Section 3.1.10, and Algorithm 2.

Quasi-Newton methods are widely used when the Hessian is unavailable. They

work by building up an approximation to the Hessian from the sequence of function

gradients that they receive. Of these methods, the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) update is generally considered to be superior [151, 192]. In this work, the lim-

ited memory BFGS implementation described by [48] was used. Briefly, the approach

approximates the inverse Hessian from a limited length sequence of the gradients that

it has received. At each direction, it selects a search direction based on this esti-

mate, and performs a line search in that direction. Complete details can be found

in [48, 207]. The original IC algorithm does not support the quasi-Newton method,

and so quasi-Newton experiments with the original IC method were not performed.

Newton-Raphson optimization methods have been most widely used with the

inverse-compositional approach, including Gauss-Newton methods in [12], and Leven-

berg-Marquardt methods in [71]. Trust-region Newton-Raphson methods are closely

related to the Levenberg-Marquardt method, but are somewhat more recent and gen-

eral [59]. For the second order model, solving the trust-region subproblem is more
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complex. The Steihaug-Toint algorithm [59, p. 205] was used for this purpose. Al-

gorithm 3 describes the trust-region Newton-Raphson approach in detail. Details of

the Steihaug-Toint solution can be found in [59].

In the experiments that follow, the generalized method and the original method

have been applied to a variety of datasets both synthetic and real. Not all image

difference measures or optimizers are appropriate for every context, but each of the

measures has been tested with each of the optimizers in at least one context.

7.6 Experiments

The algorithms were tested by running numerous image registrations from different

starting positions. Each algorithm was applied using a multiresolution approach, with

the number of levels dependent on the size of the image. Scaling of the optimization

parameters is important for any optimization algorithm. The parameters have been

scaled using the optimal scaling factors described in Section 4.5. Each optimizer used

similar stopping criteria, specifically, that the minimal scaled step size should be 0.005

units, and the minimal scaled gradient magnitude should be 0.05 units. A large bound

(400) was placed on the number of iterations and reaching that bound was considered

a failure. This was an extremely rare occurrence.

The performance of the algorithms was measured, and tested for statistically sig-

nificant differences using the testing approach described in Section 3.2. Specifically,

the experiments recorded the time required, the positional accuracy, the number of

function evaluations required and the failure rate. All runs were performed on 2.2GHz

Sun Opteron 875 processors using a single threaded implementation. Run time is the

time required to initialize and run the optimization, but does not include the time to

load the data from disk.

It is worth considering just how much speed up could possibly be achieved by

this method. Each evaluation of the cost function also requires the calculation of

its derivative and possibly its Hessian. The calculation of the derivative requires the

computation of the derivative at each pixel, and the summation of these values. The

IC method speeds up the computation of the derivative at each pixel (the per-pixel

derivative). For Hessian based methods, the IC method allows caching of the Hessian,
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so there are some further savings.

There are at least two major ways to implement the calculation of ∂D
∂φm

in the

forward additive approach. One, used by [12], warps the image and computes the

derivative on this warped image at each iteration. The other approach is to compute

the derivative of the image once, cache it, and warp this derivative at each evaluation.

The second approach is much faster, and is what was used here for comparison.

To determine just how much speed up could possibly be achieved under the best

possible conditions, the Callgrind profiler [200] was used to determine approximately

what percentage of the computation is spent on evaluating the per-pixel derivative.

This forms an upper bound on the speedup achievable by the IC method for gradient

based methods. This upper bound cannot ever be achieved in practice because some

time must be spent computing the derivative once, and time must still be spent

to retrieve the data from memory. Nevertheless, it provides a guide for evaluating

the effectiveness of an IC implementation. The results of the timings are shown in

Table 7.1 and indicate that it may be possible to speed up the time by roughly a third,

with the improvement for the MI metric likely to be a little less than the others. Some

additional improvement may be possible for the Hessian based methods, as there is no

longer any need even to sum up the computed derivatives once the Hessian is cached.

Measure MSD NCC MI
Percent time 38% 36% 29%

Table 7.1 Percentage of registration time spent computing the per-pixel
derivative. This is a upper bound on the speedup achievable using the
inverse compositional method.

Four sets of experiments with these algorithms are presented. One of the only

ways to have a true gold standard for accuracy is to warp images by a known trans-

formation and try to recover it. Experiments 1 and 2 utilize images synthetically

warped by known, random transforms. Experiment 1 consists of 2D images, warped

by a homography, and Experiment 2 consists of 3D image volumes warped by a rigid

3D transformation. These transforms are then recovered with these algorithms and

the accuracy is evaluated. While synthetically warped data provides insight into the

true accuracy of the algorithms, working with real data often provides more insight

about the reliability of an image registration method. Experiments 3 and 4 present
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experiments on real cases similar to the simulated cases in experiments 1 and 2.

7.6.1 Experiment Set 1: Synthetic Homographies

(a) Original (b) Original cropped to
ROI

(c) Example of warped
image

Figure 7.2 Example of input data for Experiment 1.

When two images are taken from a perspective camera that is rotating about

its optical center, or when a moving perspective camera takes multiple images of a

planar scene, those images are related by a homography. Not surprisingly, the homog-

raphy is one of the most commonly used transforms in computer vision applications.

Ten synthetic homographies were generated and used to warp the image shown in

Figure 7.2a. The central part of the image was then cropped out and used for the

registration tests. This cropping process avoided having the edge of the image in the

region to be registered, which could have skewed the results. The starting image, and

an example of the one of the warped input images are shown in Fig. 7.2. All work

was done with greyscale versions of the images.

For the first part of this experiment, each warped image was registered to the

original from 80 starting positions at distances from 2.6 to 81 pixels in mTRE. All

registrations were attempted in both directions, that is, both choices for which image

was fixed and which was moving were tried. Four multiresolution levels were used,

and, for speed reasons, the cost functions were evaluated using a randomly chosen

30% of the pixels. Each of the three cost functions under investigation was used to

register the data. The results are shown in Figure 7.3.

The results shown in Figure 7.3 a) show a clear ranking in terms of time required

to complete with ESM being the slowest, followed by the classical, forward additive,

algorithm, and an approximate tie between the generalized IC method and the original



188 Generalizing Inverse Compositional and ESM Image Alignment

a) Time Required (s)
MSD NCC MI

GD BFGS N
   0

   1

   2

   3

   4

   5

GD BFGS N
   0

   1

   2

   3

   4

   5

GD BFGS N
  0 

  10

  20

  30

  40

b) mTRE (pixels)
MSD NCC MI

GD BFGS N
 0  

 0.5

 1  

 1.5

GD BFGS N
 0  

 0.5

 1  

 1.5

GD BFGS N
 0  

 0.5

 1  

 1.5

c) Number of evaluations
MSD NCC MI

GD BFGS N
  0 

  10

  20

  30

  40

  50

GD BFGS N
  0 

  10

  20

  30

  40

  50

GD BFGS N
 0  

 100

 200

 300

 400

d) Failure Rate (%)
MSD NCC MI

GD BFGS N
  0 

  2 

  4 

  6 

  8 

  10

GD BFGS N
  0 

  2 

  4 

  6 

  8 

  10

GD BFGS N
  0 

  2 

  4 

  6 

  8 

  10

ESM : Significant : Ambiguous : Not Significant
Classical:
Gen. IC : Significant : Ambiguous : Not Significant
Orig. IC : Significant : Ambiguous : Not Significant

Figure 7.3 Experimental results for synthetic homographies, case 1:
Starting normal distances from the true position. The optimization al-
gorithms are Gradient Descent (GD), Broyden-Fletcher-Goldfarb-Shanno
(BFGS) and Newton-Raphson (N). For each algorithm, bars are shown
for the following methods from left to right: 1: ESM (Red) 2: Classical
Forwards Additive (Black) 3: Generalized IC (Blue) and 4: Original IC
(Green). Dark bars are statistically significantly different from classical,
light bars are not significantly different and outline bars are ambiguous
(see Section 3.2.1). No original IC method was implemented for the BFGS
optimizer.
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Figure 7.4 Experimental results for synthetic homographies, case 2:
Starting far from the correct transform. The optimization algorithms are
Gradient Descent (GD), Broyden-Fletcher-Goldfarb-Shanno (BFGS) and
Newton-Raphson (N). For each algorithm, bars are shown for the following
methods from left to right: 1: ESM (Red) 2: Classical Forwards Additive
(Black) 3: Generalized IC (Blue) and 4: Original IC (Green). Dark bars
are statistically significantly different from classical, light bars are not
significantly different and outline bars are ambiguous (see Section 3.2.1).
No original IC method was implemented for the BFGS optimizer.
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IC method. This implies that the new approach is generalizing the original IC method,

without losing any of its speed advantages. The one exception is that the IC BFGS

method for MI does not show a speed advantage. Upon examining the number of

evaluations, it was determined that this is because it has required more evaluations

to complete. It is the author’s opinion that this effect occurs because of the way the

gradient was formulated. Due to the asymmetry of the problem, the IC gradient is

slightly less accurate than the forward gradient. The line search used in the BFGS

algorithm forms a cubic model of the function using the gradient, and is sensitive to

this. This does not seem to affect the other optimizers at all.

Other than the issues with the BFGS method, the differences in accuracy (as

measured by mTRE) and number of evaluations are very small. Nevertheless, several

of the bars are colored as statistically significant. Upon investigation of the data,

this occurs because the IC method has a tendency to stop slightly early. Because the

tendency is consistently biased one way, even if small, the pairwise statistical tests

can pick it up. Its effect on the overall results is very minor.

While the ESM method does not have any speed advantage for this problem con-

figuration, it does show a reliability advantage over the classical method. Direct image

registration using this approach is dependent on the capture radius of the optimizer

being used. The capture radius is the distance (in parameter space) from the true

position that the optimizer can be started and still be expected to converge. The

results of this experiment shown in Figure 7.3 suggest that the ESM may improve

the capture radius and thus give more reliable results. In this experiment, all the

failure rates are small and it is difficult to draw conclusions. For this reason, another

experiment was required to test this conjecture. A second set of similar experiments

(Figure 7.4) were performed starting far from the correct registration. For these ex-

periments, each image was registered from 50 starting positions with mTRE ranging

from 36 to 176 pixels. Not surprisingly, failure rates in all cases are higher, and this

allows us to see that the failure rate for the ESM method is significantly lower than

for the other methods. Intuitively, this is because the optimizer chooses the average

of the directions calculated by the IC and forward methods. If only one of the two

methods is outside its capture radius, the other may provide sufficient information for

the optimizer to converge.



7.6 Experiments 191

Similar to the work of [71], this experiment shows that the IC methods have a

slightly smaller capture radius. This cannot be only due to the inclusion or exclusion

of certain pixels in the Hessian matrix (as thought by [71]) since the issue is also

present in optimizers that do not use the Hessian.

These results also show clear differences between the optimizers. The BFGS opti-

mizer and Newton-Raphson optimizer are generally more accurate and require fewer

iterations than the gradient descent optimizer on the MSD and NCC metrics. On

the MI metric, the BFGS optimizer takes more iterations than the other two, for all

methods. This is probably due to the negative curvature in the MI function. The

MI function is saddle shaped, meaning its Hessian is not positive definite, but the

BFGS update method enforces a constraint that the Hessian be positive definite. It is

probable that this mismatch between the algorithm assumptions and the cost function

properties is causing this optimizer to require more iterations. This is similar to the

results found in Section 4.6.

(a) original xy

(b) original xz
(c) original yz

(d) Warped xy

(e) Warped xz
(f) Warped yz

Figure 7.5 Slices through the center of the Brainweb volume used. Top
row, original volume, bottom row, warped volume.
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Figure 7.6 Experimental results for synthetic rigid 3D transforms for
MSD (left) and MI (right). The optimization algorithms are Broyden-
Fletcher-Goldfarb-Shanno (BFGS) and Newton-Raphson (N). For each
algorithm, bars are shown for the following methods from left to right:
1: ESM (Red) 2: Classical Forwards Additive (Black) 3: Generalized IC
(Blue) and 4: Original IC (Green). Dark bars are statistically significantly
different from classical, light bars are not significantly different and out-
line bars are ambiguous (see Section 3.2.1). No original IC method was
implemented for the BFGS optimizer.

7.6.2 Experiment Set 2: Synthetic 3D Rigid Transformations

Only limited work with the inverse compositional method on 3D images has been

reported [2, 13], although its efficiency gains are particularly relevant to this problem

due to the size of the images. In this experiment, a synthetic Magnetic Resonance

Imaging (MRI) volume generated using the Brainweb [123] software was used. Five

random rigid transformations were created, and the original image was warped by

each of them. Registration was then performed from 45 starting positions ranging

from 2 to 43 mm in mTRE.

As the brain image (illustrated in Figure 7.5) was surrounded by a black back-

ground, edge effects were considered to be small, and a cropping step was not per-

formed as it was in the previous experiment. Three multiresolution levels were used

in the optimization, and, as in the previous experiments, a random 30% of the image
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voxels were used to calculate the measures. To save time and space, and because

MSD and MI are the most widely used measures in medical imaging applications,

these experiments were not performed with NCC. Also, as the results for gradient

descent in the previous experiment were consistent with the other methods, but it

was slower and less accurate than BFGS or Newton-Raphson, it was omitted from

these experiments.

Overall, the results shown in Figure 7.6 are entirely consistent with the results of

experiment 1 using synthetic homographies. The generalized IC approach is consis-

tently faster than the classical approach, even for the BFGS optimizer in this case.

This is interesting to demonstrate, as the mapping φf (φm) is much more non-linear in

this case than in the previous case (see Appendix F). This means that the difference

between the path explored by the generalized method and the original IC method (see

Fig. 7.1) is more significant in experiment 2. That the generalized approach works

still achieves speed gains here is a sign of its effectiveness.

There is a clear, and statistically significant difference in the time required for

the algorithms to run, with ESM being slower than the classical, forward additive,

method, and with both IC methods being faster. The differences in evaluations and

mTRE are tiny, but in certain cases appear significant. As in the previous experiment,

this is due to a slight but consistent bias – in this case the IC method is occasionally

taking an additional iteration to complete, and gaining a marginal (on the order of

0.01 pixels) amount of accuracy. Such a tiny difference does not have any practical

impact. The failure rates on this problem were very low and no statistically significant

differences between algorithms were detected. Overall, the generalized IC method is

faster than the classical method, without increasing the failure rate.

7.6.3 Experiment Set 3: Real Homographies

In this experiment, 8 image pairs taken with a camera being rotated on its optical

center were acquired. Under these conditions, the transformation between the images

can be modeled by a homography, and this is often done to allow panoramic stitching

of the images. A form of ground truth was created using the Autostitch software [42],

and manually checked for accuracy. However, this ground truth can only be considered

a silver standard – an independent comparison, but not absolutely accurate.
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Figure 7.7 A typical image pair for Experiment 3

These images present a moderately difficult registration problem. One reason is

that the amount of overlap is limited. Furthermore, no correction for lens distortion

was made; thus, the true transformation from image to image is not a perfect ho-

mography. Nevertheless, these conditions are realistic, and make the problem more

interesting. Figure 7.7 shows a typical image pair from the set.

For this experiment, the images were registered from 20 starting positions ranging

from approximately 3 to 19 pixels in mTRE. All registrations were attempted in both

directions, that is, both choices for which image was fixed and which was moving were

tried. Due to the significant lighting changes between images in any given pair, MSD

was an ineffective measure, and was not used for these experiments. As in experiment

1, four multiresolution levels were used, and a random 30% of the pixels were taken

to compute the measures. All registrations were performed on greyscale versions of

the images.

For brevity, the results for all images have been combined in the graphs presented

in Figure 7.8. The images are of different sizes and characters, so these numbers must

be interpreted in that context. (The statistical significance comparisons are pairwise,

however, and are therefore valid.) As in the previous two experiments, there was little

interesting difference in the number of evaluations and the mTRE, so these results

have not been presented graphically. It is worth noting that the mTRE was higher
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Figure 7.8 Experimental results for registrations of real homographies
using NCC (left) and MI (right). The optimization algorithms are
Gradient Descent (GD), Broyden-Fletcher-Goldfarb-Shanno (BFGS) and
Newton-Raphson (N). For each algorithm, bars are shown for the following
methods from left to right: 1: ESM (Red) 2: Classical Forwards Additive
(Black) 3: Generalized IC (Blue) and 4: Original IC (Green). Dark bars
are statistically significantly different from classical, light bars are not
significantly different and outline bars are ambiguous (see Section 3.2.1).
No original IC method was implemented for the BFGS optimizer.

than in the synthetic examples in all cases, averaging about 2 pixels. This is due

to the inexact nature of the ground truth standard, lever effects due to large areas

(i.e., sky) without overlap, and residual lens distortions in the images.

Once again, there is a clear and statistically significant ranking in terms of speed,

with the generalized ESM approach being the slowest, followed by the classic forward

additive approach, with the generalized IC approach being the fastest in all cases

except the BFGS optimizer for MI. The original IC method does not perform as well

in terms of speed on these images, and in the case of Newton-Raphson optimization

of NCC is actually slower than the classical method (see Figure 7.8 a)). This slow

performance is most likely related to its even poorer performance in terms of reliability.

The generalized IC algorithm performed as well in terms of failure rate as the clas-
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sical, forward additive, algorithm, with only the Newton-Raphson, NCC case showing

an ambiguous difference in Figure 7.8 b). However, the original IC method proved

very unreliable on these images, showing a striking increase in failure rate compared

to all other algorithms. It is the author’s opinion that this was due to residual lens

distortions invalidating the compositional update of the original algorithm. As shown

in Figure 7.1, the compositional update traces out a curved path in the moving im-

age parameter space. The validity of this path is determined by the validity of the

transformation model. Converting the derivative, on the other hand, only relies on

the validity of the tangent space local to the current point on the manifold of trans-

formations. These results indicate that this is a more robust approach.

7.6.4 Experiment Set 4: Real Rigid 3D Transformations

(a) MR

(b) CT

(c) 3DRX

Figure 7.9 Slices through MR, CT and 3DRX images of cadaver ver-
tebrae provided for registration testing in [190]

In [190], several 3D volumes in different modalities intended for use in testing

of registration algorithms are described. These have been registered independently

and this provides a silver standard for registration. The datasets consist of volumet-

ric images of cadaver vertebrae obtained with magnetic resonance (MR), computed

tomography (CT), and 3D X-Ray (3DRX) imaging techniques. Two triplets of regis-

tered images are provided. Figure 7.9 shows slices through the center of the volumes

for one of the sets of images, the other is similar. Mask images are also provided

by [190] to remove the extraneous surrounding area from the registration.

The original images were provided at resolutions of 1 × 0.75 × 0.75mm for MR,

0.3×0.49×0.3mm for CT and 1×1×1mm for the 3DRX dataset. To make the dataset
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sizes and resolutions comparable, the CT data was resampled to a 0.75×0.75×0.75mm

grid.
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Figure 7.10 Experimental results for real 3D rigid registrations with
mutual information. The optimization algorithms are Broyden-Fletcher-
Goldfarb-Shanno (BFGS) and Newton-Raphson (N). For each algorithm,
bars are shown for the following methods from left to right: 1: ESM (Red)
2: Classical Forwards Additive (Black) 3: Generalized IC (Blue) and 4:
Original IC (Green). Dark bars are statistically significantly different
from classical, light bars are not significantly different and outline bars are
ambiguous (see Section 3.2.1). No original IC method was implemented
for the BFGS optimizer.

As the images are of greatly different modalities, MI is the only appropriate mea-

sure to use for registration. As in experiment 2, gradient descent was considered too

slow a method to use on these large datasets, so only the BFGS and Newton-Raphson

methods were used. The images were registered from starting positions ranging from

4 to 9 mm in mTRE from the true registration solution. Two multiresolution levels

were used in the registration, and in this case 100% of the available pixels were used.

The combined results for all 6 image pairs are presented in Figure 7.10. Like the

previous experiment, there are some variations in image size and character, and the

combined results should be interpreted with that in mind. The timing results are con-

sistent with the previous experiments, with the generalized IC method being fastest.

However, in this case the ESM method proves to be much slower than the other meth-

ods. Upon examination of the data, it was determined that this is occurring because

the optimizer has a tendency to move from the first to the second multiresolution

level too early.
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In this particular case, the inverse compositional and ESM methods both show a

statistically significant improvement in accuracy over the classical, forward additive

approach. However, as this was not the case for other datasets, it is the author’s

opinion that this is not a general trend, and is most likely due to differences in the

noise levels in the gradients of this particular dataset. Finally, as in the case of the

real homography experiment, the failure rate of the original inverse compositional

method is significantly higher on this data.

7.6.5 Discussion

Overall, the results of each separate experiment are consistent. In each case, the

generalized inverse compositional method runs faster than the classic, forward additive

method, and the generalized ESM method runs a bit slower. No significant drop in

the number of evaluations required when using the generalized ESM was observed.

This is most likely related to the curvature of the path through the image domain, as

discussed in Section 7.3. However, an increase in reliability over the other algorithms

when starting far from the correct transform (see Figure 7.4) was observed.

In all cases, the generalized IC method is equivalent or better than the original IC

method in terms of both speed and reliability. Its major advantage, is the ease with

which new optimization methods, or existing optimization libraries can be integrated

with it. There may be a slight decrease in reliability far from the correct transform

when using either the generalized or the original IC method, which is consistent with

results found by other authors (e.g., [71]) for the original IC method. However, in the

real homography case, the original IC method proved very unreliable. It is the author’s

opinion that this is due to the transforms in question not truly being homographies

due to residual lens distortion.

Table 7.2 summarizes the overall speed up obtained for each experiment, and for all

experiments combined. Overall, the generalized method obtains speed improvements

quite near the maximum possible. The benefit is most pronounced for the MSD

metric, and somewhat less pronounced for the NCC metric – which is consistent with

the relative proportion of time (Table 7.1) spent computing the derivative in each.

The time improvements for the MI measure are also significant. For the Newton-

Raphson method they are particularly large, which is due to the MI Hessian requiring
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Measure MSD NCC MI
1a: Syn. Hom. GD 29.6% 27.1% 14.2%
1a: Syn. Hom. BFGS 24% 21.5% 0.8%
1a: Syn. Hom. N 29.3% 30% 45.3%
1b: Syn. Hom. GD 29.7% 31.4% 31.5%
1b: Syn. Hom. BFGS 23.6% 23.6% -2.1%
1b: Syn. Hom. N 30.6% 37.1% 53.3%
2: Syn. R. 3D BFGS 52% – 33.3%
2: Syn. R. 3D N 17.5% – 21.2%
3: Homog. GD – 16.1% 10.7%
3: Homog. BFGS – 17.4% 1.5%
3: Homog. N – 19.2% 39.5%
4: Rigid 3D BFGS – – 19.5%
4: Rigid 3D N – – 63.6%
Total: GD 29.6% 24.9% 18.8%
Total: BFGS 33.2% 20.8% 8.8%
Total: N 25.8% 28.8% 44.6%
Total: ALL 29.5% 24.8% 24.9%

Table 7.2 Overall speedup found when using the generalized IC
method. These show the percentage speedup (T imeSTD−T imeIC

T imeSTD
× 100%)

when compared to the classical (forward additive) method. The totals
are averages of these percentages.

more computation than the MSD or NCC Hessians. For the gradient based optimizers,

however, the speed up is not as near the theoretical maximum as for MSD and NCC.

This is due to three reasons. One being the different balance of computational burden

– MI spends less time proportionally computing the gradient than the other two

methods and thus has less to gain from the inverse compositional approach. The

second reason is that the asymmetric implementation requires some extra computation

to compute ∇φf
DMI . Finally, the BFGS optimizer had some difficulty optimizing the

IC MI due, again, to the asymmetry. An extension of the symmetric MILK (Mutual

Information Lucas-Kanade) implementation of [71] would likely provide some further

efficiency gains.

From the results, it seems clear that the advantages of the generalized ESM method

in this context, are not its speed but its greater reliability. Table 7.3 shows the change

in failure rate for each experiment, and the overall total. The results for experiment

1b, which was designed to be particularly difficult, show significantly more reliable
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Measure MSD NCC MI
1a: Syn. Hom. GD 0.1% (11.1%) -0.2% (-11.1%) -0.3% (-3.9%)
1a: Syn. Hom. BFGS 0.0% (0.0%) 0.0% (0.0%) -0.2% (-100.0%)
1a: Syn. Hom. N -0.2% (-60.0%) -0.1% (-20.0%) 0.5% (200.0%)
1b: Syn. Hom. GD -1.0% (-14.3%) -5.4% (-36.0%) -5.6% (-8.0%)
1b: Syn. Hom. BFGS -1.6% (-25.8%) -4.2% (-42.4%) -12.1% (-45.3%)
1b: Syn. Hom. N -1.8% (-15.4%) -2.6% (-15.3%) -5.0% (-14.1%)
2: Syn. R. 3D BFGS 1.3% (100.0%) – (–) 0.0% (0.0%)
2: Syn. R. 3D N 0.0% (0.0%) – (–) 0.0% (0.0%)
3: Homog. GD – (–) -2.8% (-21.4%) -1.9% (-9.7%)
3: Homog. BFGS – (–) -4.4% (-28.6%) 3.1% (9.1%)
3: Homog. N – (–) -1.6% (-10.9%) 2.5% (8.2%)
4: Rigid 3D BFGS – (–) – (–) -0.8% (-15.4%)
4: Rigid 3D N – (–) – (–) 0.0% (0.0%)
Total: GD -0.5% (-13.2%) -2.8% (-28.3%) -2.6% (-8.0%)
Total: BFGS -0.1% (-4.0%) -2.9% (-34.5%) -1.6% (-14.4%)
Total: N -0.7% (-17.5%) -1.4% (-13.2%) -0.4% (-2.8%)
Total: ALL -0.4% (-11.8%) -2.3% (-24.0%) -1.3% (-7.6%)

Table 7.3 Change in failure rates found when using the general-
ized ESM method. These show the change in failure rate percentage
(FailESM − FailSTD) when compared to the classical (forward additive)
method. The percentage change of the failure rate (FailESM−FailSTD

FailSTD
×

100%) is shown in parentheses. The totals are computed by first av-
eraging the failure rates giving each experiment equal weight, and then
computing the change.

results when using ESM. The improvement is somewhat hidden in the overall results

(bottom rows, Table 7.3) because most experiments were feasible for all the algorithms

under test, and thus the greater reliability of generalized ESM never came into play.

7.7 Conclusions

In this chapter, generalizations of the popular inverse compositional (IC) and efficient

second order methods (ESM) for image registration have been presented. These gen-

eralizations are based on the insight that these methods can be viewed as different

ways of computing the derivative and Hessian of the image difference measure. The

inverse compositional method provided us with an efficient way to compute ∇φf
D

and Hφf
D when what standard optimizers need is ∇φmD and HφmD. ESM, on the
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other hand, computes more accurate estimates of ∇φD and HφD by using both those

with respect to φf and those with respect to φm. Both methods previously placed

significant restrictions on how the rest of the image registration problem had to be

formulated. The generalization shows that the chain rule can be used to convert the

derivatives from one variable to another. The advantages of these methods can then

be obtained in more general image registration contexts.

These approaches have been explored using three popular image similarity mea-

sures, the Mean Squared Difference (MSD), Normalized Cross-Correlation (NCC), and

Mutual Information (MI), and three typical optimizers, gradient descent (GD), quasi-

Newton (BFGS) and Newton-Raphson (N) methods. The IC method can achieve a

maximal speed up of about 1/3 and the generalized method achieves nearly that for

the MSD and NCC image difference measures on these optimizers. The speedup is

less, but still significant, for the MI measure. This measure was more difficult mainly

due to its asymmetric formulation.

It was found that the generalized ESM method does not improve results in terms

of speed, but does improve the reliability of the optimization. This can be understood

intuitively as the ESM method combines estimates of the optimization step from both

the inverse and forward approaches. This estimate is, particularly in difficult cases, a

better estimate on average than either estimate alone.

A further advantage of the generalization presented in this thesis, is that the

various approaches can be easily combined, which is something of interest to address in

future work. It is probable that using a few of the relatively expensive ESM derivative

calculations early in the optimization process would improve the optimizers’ capture

radius, while using IC derivative calculations later in the optimization process would

improve the computational efficiency. In this way the generalization can allow one to

get the best of both worlds.
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Chapter 8

Conclusions and Future Directions

In this thesis I have examined methods for efficient and reliable direct, parameterized

image registration. Image registration is a key component of a wide variety of appli-

cations. For example, this thesis has built directly on image registration work that

was originally applied to tracking (e.g., [12, 66]), medical data fusion (e.g., [75, 164]),

and visual servoing [22, 139, 140]. Direct registration techniques also form important

parts of applications in remote sensing (e.g., [55, 204]), superresolution (e.g., [98, 111])

and video coding (e.g., [72]). While all applications can benefit greater efficiency and

reliability, certain time sensitive applications, such as intraoperative image guidance

(e.g., [5, 54, 160]) can particularly benefit from fast and reliable approaches.

Recall that direct parameterized image registration works by defining an image

difference measure between two images to be registered. The mapping between the

spaces of the two images is expressed as a parameterized function and one image is

warped to match the other. Registration can then be expressed as an optimization

problem, that of finding the warp parameters that minimize the difference between

the two images. The main computational burden in solving this problem lies in the

calculation of the image difference measure, D. To achieve faster registration, either

D has to be evaluated fewer times, or it has to be evaluated more quickly, or both. To

obtain equivalent results with fewer evaluations of the image difference measure re-

quires selecting the optimization methods most appropriate to the problem. Quicker

evaluation can be achieved either by using only some of the image data, or by precal-

culating and caching parts of the measure. In this thesis, I have examined all of these
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possible approaches. Throughout, I have taken the philosophy of being as general

as possible rather than focusing on a specific application. Each problem has been

approached from a theoretical perspective first, but these theoretical developments

have been backed up in each case by extensive experiments on a wide range of both

2D and 3D images. As a result, the conclusions of this thesis are applicable to a wide

range of problems in both computer vision and medical imaging.

8.1 Discussion

In Chapter 4 I examined the choice and tuning of optimization algorithms for the

image registration problem. To perform a valid comparison between algorithms, it was

first necessary to address two issues: (1) the calculation of approximate Hessians for

image difference measures, and (2) the scaling of the parameters of the transformation

function. Although their importance was known, previous work had left these issues

without well-analyzed solutions.

For image registration problems, the true Hessian is impractical to calculate. How-

ever, for least-squares problems (i.e., for the mean squared image difference measure)

the Gauss-Newton approximation has proved very useful [12, 136]. I have shown in

Section 4.3 that the Gauss-Newton Hessian approximation idea can be extended to

non least squares cost functions, specifically to normalized correlation and mutual

information. For mutual information (MI) in particular this new approximation trun-

cates the Taylor series in a different place than previous work [70, 185, 186]. I have

shown theoretically and experimentally that the approximation I have presented for

the MI Hessian is significantly more accurate.

The scaling of the transformation parameters is known to have a significant effect

on the performance of optimization algorithms. However, previous examinations of

optimization in registration had treated this issue in a problem specific way. I have

examined the issue of parameter scaling and presented a method in Section 4.5 for

automatically determining an optimal set of scale factors for the parameters of any

registration problem. Experiments show that using these scaling factors gives superior

optimization performance on image registration problems using matrix based trans-

forms. For deformable transforms, the experimental results were more subtle. I found
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that using a set of scale factors with a somewhat compressed range provided better

performance on these problems. I am unable to conclusively state why this occurred,

but I conjecture that it is related to the fact that these problems were approached

using implicit regularization only. With the scale factors I had originally proposed

on this problem the optimization tended to explore very unlikely sets of parameter

values. It is my opinion that applying an explicit regularization technique is probably

the best way to address this issue.

With scaling and the Hessian properly calculated, it was possible to make a mean-

ingful comparison of the performance of different optimization algorithms. While

studies that examine optimizer performance on a particular image registration prob-

lem are useful, it was my intention to determine guidelines for optimizer selection and

use that could be generalized to a wide range of image registration problems in both

computer vision and medical imaging. The analysis in Section 4.6.1 showed that the

performance of optimization algorithms depends greatly on the number of parameters

in the transformation used.

I examined the performance of five algorithms – the downhill simplex, Powell’s,

gradient descent, BFGS and Newton-Raphson algorithms – on synthetic and realistic

image registration problems ranging from 3 to 1029 parameters. The results immedi-

ately make clear that the downhill simplex and Powell’s algorithms are not an efficient

choice for any but the smallest of image registration problems. This is true despite

the fact that they require evaluation of the cost function only, which is cheaper than

the gradient and Hessian evaluations required by other methods. The relative perfor-

mance of the remaining methods – gradient descent, BFGS and Newton-Raphson –

is highly dependent on the specific characteristics of the image registration problem.

The theoretical analysis, and experiments on a simple problem implied that the

BFGS quasi-Newton method should require fewer iterations than the gradient de-

scent method, particularly as the number of parameters increased. However, the

experiments on image registration problems gave opposite results. For several trans-

formations with both large and small numbers of parameters, the BFGS method re-

quired significantly more function evaluations, and therefore more time, than gradient

descent although it does yield a slight improvement in precision. It also showed some-

what poorer performance optimizing mutual information. It is my opinion that the
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marginal improvement in precision on the high-dimensional deformable transforms is

not worth the significant additional computational burden that this method required.

I suspect that the poorer performance of the BFGS algorithm is due to violations

of its basic assumptions inherent in the image registration problem, particularly the

quasiconvexity of the cost function.

The Newton-Raphson algorithm, on the other hand, behaved as expected based on

a theoretical analysis. It required fewer function evaluations than either of the other

methods (although this effect is less pronounced for MI). However, these evaluations

are expensive. Thus it is most appropriate for use on transformations such as the

thin plate spline (TPS), which have very expensive gradient calculations, and it gives

superior results for a middle range of parameter sizes.

As a brief overall guideline, for both small (≤ 6) and large (≥ 150) parameter

problems, the gradient descent method is recommended. In this middle range of

numbers of parameters, if the gradient has complexity O(N) to compute, then the

BFGS method is appropriate, while if the gradient complexity is O(N2), then the

Newton-Raphson method is likely superior. For mutual information which has an

indefinite, and computationally expensive Hessian, the gradient descent or BFGS

methods are probably preferable to Newton-Raphson.

The work of Chapter 4 addressed mainly the types of efficiency gains which involve

reducing the evaluation of D. Chapter 5 addresses speeding up the evaluation of D

by using only some of the pixels. I examined the question of how many pixels should

be used to compute the cost function. While the idea of using only some of the pixels

is an old one, this was the first time a formal deliberation control framework has been

applied to this problem. Deliberation control methods require algorithms which can

be used for partial evaluation – such as the anytime algorithms – and a model of

how the quality of the results varies as the level of computation is changed. Image

difference measures are formulated as a calculation looping over all the pixels, so they

lend themselves easily to formulation as anytime algorithms. The magnitude of the

image difference measure gradient was used as a feedback parameter, and a dynamic

performance profile was used to model the quality versus calculation level character-

istics of these functions. This approach has the distinct advantage of adapting the

computation level at every evaluation of the cost function. The obvious competing
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technique to this adaptive approach is simply to use some constant percentage of the

pixels. The comparative experiments in Section 5.3.3 show that adapting the amount

of computation at each evaluation of the cost function allows the anytime approach

to make performance gains where possible, without the loss of reliability which oc-

curs with an arbitrary cutoff on computation. Because the performance profiles are

learned for various classes of images, the technique can also adapt to the properties

of the images being examined. For example, the registration of T1-weighted and T2-

weighted magnetic resonance images is likely to require rather different numbers of

pixels than the registration of computed tomography and ultrasound images.

It has been stated by a number of authors (e.g., [124, 181]) that using pixels of

high derivative is more effective for image registration. This idea was formalized in the

framework of [66] where pixels are chosen based on a greedy approach to reducing the

size of the estimated covariance matrix of the parameters. However, some performance

degradation had been reported, without being examined in detail. In Chapter 6, I

examined the reasons for this performance degradation. The optimization techniques

used in image registration rely on the Taylor series of the image difference function

being a valid approximation. The range over which this approximation is valid is

dependent on the scale of the image derivatives used to compute it, an issue that had

previously been ignored in the literature on pixel selection. It is shown that when pix-

els are selected using derivative based methods the capture range of the optimization

is proportional to the scale of the derivative used to select the pixels. I also examined

the pixel selection criterion of [66] and developed both a more formally valid criterion

which approximates more closely the mutual information between observation and

parameter, and approximate criteria that are faster to compute.

The inverse compositional (IC) algorithm [12] and the efficient second order (ESM)

algorithm [22, 139, 140] are efficient image registration methods which make use of

the special symmetry inherent in the registration problem. Specifically, there is an

equivalence between warping the moving image one way, and warping the fixed im-

age in an equal and opposite way. The inverse compositional method computes an

update step to the warp for the fixed image, and composes the inverse of that warp

with the current moving image warp. This achieves fast registration because the im-

age derivative and the difference measure Hessian can be precomputed and cached.
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However, all previous implementations have required the optimization algorithm to

makes steps compositionally in the parameter space. This complicates the implemen-

tation, because most standard optimization algorithms are designed to use additive

update steps. The ESM algorithm computes updates to both this fixed image warp

and the moving image warp and combines them in a final update step. Current im-

plementations were restricted because it was necessary to be able to add together

the fixed and moving warp parameters, something that was only possible for specific

parameterizations based on the exponential map of the Lie group of transformations.

I have shown in Chapter 7 that so long as the warp has differentiable composition

and inversion operations – a restriction that was already placed on the warps by the

use of these methods – then we can view the moving image warp as a continuous,

differentiable function of the fixed image warp. As a result, the derivative with respect

to the fixed image warp can be converted to be with respect to the fixed image warp

by a simple application of the chain rule for derivatives. By converting the derivative

in this way, both algorithms can be generalized so that the inverse compositional

algorithm no longer requires a compositional step, and the ESM algorithm no longer

requires special parameterizations. Experimental results show that the generalized

inverse compositional algorithm performs at least as well as the original, and in certain

cases performs much better. The generalized ESM algorithm does not provide a speed

gain, but does provide a gain in reliability. This occurs because using the generalized

ESM approach has the effect of widening the capture radius of the cost function.

Each of the approaches I have developed can be applied, alone or in combina-

tion, to design efficient and reliable direct image registration solutions. As I have

avoided application specific approaches, the efficiency gains of these methods should

be applicable to any of a wide range of applications.

8.2 Summary of Contributions

In summary, in this thesis I have presented a number of specific contributions that

can be directly applied to a wide range of practical image registration problems.

• For the use of a Newton-Raphson type iteration, a Hessian, or approximate

Hessian is required. I have shown how the Gauss-Newton approximation to the
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Hessian may be generalized to non-least squares cost functions. Experimental

results indicate that this approximation is effective, and in particular, that this

approximation of the MI Hessian is more effective than previous approaches.

• The scaling of the parameters of the optimization problem is very important

for optimizer performance, but previous methods for determining the scaling

factors have been ad-hoc. I have presented a method for computing optimal

scaling factors from the geometric configuration of the problem alone. Experi-

mental results show that using these scaling factors greatly enhances optimizer

performance on matrix based transforms.

• Different optimization algorithms are appropriate for different registration prob-

lems. I have analyzed optimizer performance both theoretically and experimen-

tally, and have made recommendations that can be generalized to a wide range

of different optimization problems. It is my hope that these recommendations

will help future designers make principled, rather than ad-hoc, choices of opti-

mization algorithms for registration problems.

• It is clear that image registration can be made more efficient by using only

some of the pixels to calculate the image difference measure is clear. However,

previous work had not addressed the tradeoff between the speed gains of using

this approach, and the potential loss of accuracy. In this thesis, I have presented

the first approach that uses a formal deliberation control framework to manage

the computation level at each evaluation of the cost function. Experiments have

shown that this principled, adaptive approach can achieve speed gains without

degrading accuracy and reliability.

• Many authors have recommended the heuristic of using pixels of high derivative

for image registration, and more formal schemes have been proposed (e.g., by

Dellaert and Collins [66]). However, this previous work has ignored the impor-

tant issue of scale. I have shown that the scale of the derivative used to select

pixels has an important effect on the capture radius of the image difference mea-

sure. The capture radius will be roughly equivalent to the scale of the derivative

used to select pixels, thus the scale should be chosen based on the uncertainty
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in the transformation parameters.

• The IC and ESM efficient alignment methods relied on special characteristics of

the image registration problem to achieve efficiency, but they imposed restric-

tions on the optimization and parameterization used. I have shown that each

method can be viewed as a way to calculate the derivative with respect to a

new set of parameters. As these new parameters are continuous, differentiable

functions of the old, it is possible to transform them using the chain rule, re-

moving the need for the restrictions previously imposed. The experiments show

that generalized methods based on this transformation of the derivative perform

well, and in fact the generalized inverse compositional method outperforms the

original in terms of reliability in a number of cases.

8.3 Future Directions

In Chapter 4 I compared optimization algorithms and made recommendations regard-

ing which algorithm would perform in a superior way on different problems. However,

there are a vast number of optimization approaches and it was impossible to address

all aspects of this problem. I will now discuss a number of interesting open problems

for further research.

The results of my research suggest that trust-region approaches may have a speed

advantage while line-search approaches may have a reliability advantage, but more

research would be needed to definitively answer this question. It is also my opinion

that trust-region quasi-Newton algorithms could perform very well on the image reg-

istration problem, particularly as they are reputed to be more robust to indefinite

Hessians [151]. Finally, in the context of this research, there was not sufficient time

to explore the use of stochastic optimization algorithms. Klein et al. [120] found a

stochastic algorithm, the Robbins-Monro method, to be the most efficient approach

of the ones they tested. There are stochastic analogs for all the algorithms tested here

and the work of [1], in the VLSI domain, suggests that their stochastic nature could

be integrated with a deliberation control approach.

Beyond the simple selection of the algorithm, the results of Chapter 4 suggest

that combinations of optimization techniques may prove most effective. For instance,
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a robust, but slow algorithm may be appropriate at the top level of a multiresolution

pyramid, while less robust, but faster algorithms could be applied lower down in the

pyramid. Alternatively, the results of the experiments of Section 4.6 suggest that

it may be more effective to apply gradient descent methods early in a deformable

registration for speed, and some BFGS iterations later for accuracy.

Chapter 5 showed that my specific implementation of a deliberation control frame-

work yielded efficiency gains on image registration problems without losing reliability.

However, in general what is needed for deliberation control is algorithms that support

partial evaluation, and a model of how their accuracy changes with the amount of

computation. While the model I used here – that of dynamic performance profiles –

provided interesting results, it is not the only model possible. It would be interesting

to explore other ways of modeling the relationship between computation and accuracy

in the image registration context.

The insight presented in Chapter 6, that the effectiveness of a particular set of pix-

els for image registration purposes is dependent on the scale at which they are chosen,

explains a number of observations about the image registration process. However, I

did not use this insight to develop an algorithm for fast registration. A method has

recently been proposed [23] which selects pixels based on how well they adhere to a

particular Taylor series model of the cost function around the point of registration,

but the method does not explicitly deal with the matter of scale. It would be inter-

esting to explore the effect of the scale of pixel selection in the context of this new

pixel selection method.

Finally the generalization of the inverse compositional and ESM methods pre-

sented here are developed under the assumption that the transformations in question

form a group. The inverse compositional method has been shown to work in cases

where the transformations only approximately form a group [143]. It would be inter-

esting to explore the extension of my generalized approach to cases like this. It could

prove particularly useful for warps such as the thin plate spline (TPS). Recall from

Section 4.6.1 that the calculation of the Jacobian of the TPS is time consuming, re-

quiring O(N2) operations. A generalized inverse compositional approach to the TPS

would allow the Jacobian matrix to be precomputed. This would make warps with

very large numbers of parameters with the thin plate spline feasible.
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While each of the components of this thesis presents interesting opportunities

for further research, the components presented here are also ready to be used. I

carried out this research on test image registration problems that were quite well

defined and bounded, which was critical in order to get objective, statistically testable

results. However, now that the methods proposed here have been tested in a controlled

context, it will be interesting to exploit this knowledge in practical image registration

problems.

It was problems in image guided neurosurgery that originally motivated my interest

in this domain. These problems are characterized by using multimodal imagery and

requiring both rigid and curved transformations. Naturally, this application requires

methods that are both efficient and reliable. I believe that some of the most interesting

future challenges will lie in applying theory to engineering solutions that directly

benefit society. I list below some related work which represents a beginning of the

process of connecting this research with real clinical practice.

Related work

The work in the following papers does not directly appear in this thesis, but is closely

related to this research.

[40] Rupert Brooks, D. Louis Collins, Xavier Morandi, and Tal Arbel. De-

formable ultrasound registration without reconstruction. In Proceedings

of the 11th International Conference on Medical Image Computing and

Computer Assisted Intervention (MICCAI’08), pages 1023–1031, New

York, USA. 2008.

[6] Michel Audette, Rupert Brooks, Robert Funnell, Gero Strauss, and Tal

Arbel. Piecewise affine initialized spline-based patient-specific registra-

tion of a high-resolution ear model for surgical guidance. In MICCAI

Workshop on Image Guidance and Computer Assistance for Soft-Tissue

Interventions, New York, USA. 2008.
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Appendix A

Mathematical Glossary

Symbols

Following the usual standard, multidimensional objects (vectors, matrices and tensors)

will be shown in bold font, i.e., W (x,φ). The following table summarizes the most

commonly used mathematical symbols in this thesis.

◦ The composition operator

](x) The dimension of the vector, x

bxc The floor operator; the largest integer less than x

dxe The ceiling operator; the smallest integer greater than x

β0, β1, ... B-splines of order 0,1,...

D The image difference measure; cost function for optimization

φ The parameters of the image warping function

Hxf(x) The Hessian matrix of second derivatives with respect to x of the

function f(x)

If The fixed image as a set of pixels.

If (x) The fixed image as a scalar function of x ∈ Rd

Im The moving image as a set of pixels.

Im(x) The moving image as a scalar function of x ∈ Rd

J A Jacobian image. Considering an image warped by some parame-

ters, I(W (x,φ)), then J = ∂I
∂W
· ∂W
∂φ

∇xf(x) The gradient with respect to x of the function f(x)
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R The real numbers

W (x,φ) The transformation, or warp. It maps the point x to a new position,

and is controlled by the warp parameters, φ
x A point in space.

X A set of points in space.

Subscripts

X(n) n is an iteration counter. Iteration counters are shown in parentheses.

Xi i is an index to an element of the object, X

Images

An image is a scalar function defined over a space, I(x); x ∈ Rd. An image can also

be considered as a set of pixels, in which case this function is evaluated at (usually

a regular lattice of) points in the space. To represent this set of points, an upper

case X will be used. So I(X) is the scalar image function evaluated at the set of

points, X. For brevity, this may be written I where being bold indicates that this is

a multidimensional object, rather than a scalar function. Indexing a particular pixel

can then be written either Ii or I(Xi).

Derivatives

If f(x) is a scalar function of a vector argument, then ∂f(x)
∂x

has ](x) elements. The

following convention is used:
∂f(x)

∂x

is a row vector, while

∇xf(x)
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is a column vector. So ∇xf(x) =
[
∂f(x)
∂x

]T
. The convention can be extended to vector

functions of vector variables, so:

∂f(x)

∂x
=


∂f1(x)
∂x1

∂f1(x)
∂x2

. . .
∂f2(x)
∂x1

∂f2(x)
∂x2

. . .
...

...
...


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Appendix B

Kernel Splines

The material in this Appendix is based on the work previously published as:

[36] Rupert Brooks and Tal Arbel. Improvements to the itk::KernelTransform

and subclasses. Insight Journal, March 2007. DSpace handle http:

//hdl.handle.net/1926/494.

Deformable transformations based on a small set of matched points are extremely

useful in medical imaging. While the deformation at each point is explicitly defined

by the correspondence, the deformation between points must be interpolated. There

are a family of spline based approaches which interpolate a smooth deformation field,

of which the most widely known is the thin plate spline [31, 94]. In the ITK, this

family of transformations is referred to as kernel transformations, because they can

be expressed as linear combinations of radially symmetric kernel functions centered

on each point.

In order to use the kernel splines in the ITK registration framework certain mod-

ifications to the existing implementation were required. This appendix describes the

implementation which was also published in [36].

B.1 Kernel Transforms

We begin with two sets of n corresponding landmark points, in a space with dim

dimensions. We will refer to these as the source landmarks, PS = {pSi
}, and the

http://hdl.handle.net/1926/494
http://hdl.handle.net/1926/494
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target landmarks, PT = {pTi
}. A displacement vector, di = pTi

−pSi
, can be defined

at each point, and these vectors can be grouped into one long vector, D, as follows:

D =
[

dT1 dT2 ... dTn

]
. (B.1)

The kernel function, g(x) maps dim-dimensional vectors onto dim× dim symmetric

matrices.

In this model, a deformation field, F(x), is viewed as a set of dim independent

functions of spatial position,x, F(x) = [f1(x), ..., fdim(x)]T . Thus there is a sepa-

rate, independent spline for the displacement in each coordinate. Each such spline

is considered to be a combination of a linear (affine) transformation, plus a weighted

combination of kernel functions centered at each point.

F(x) = CT ·G(x) +A · x + b (B.2)

where CT is a dim × n vector of weights, G is the dim × dim · n matrix made by

stacking the kernel functions centered at each landmark point, evaluated at the point

of interest, and A and b are a linear transformation in the coordinates. Thus the

complete spline is defined by n · dim+ dim2 + dim parameters.

For n landmark points the value of the displacement field at each point provides

dim·n constraints. There are fewer equations than unknowns so this leaves the system

underdetermined. A further constraint is applied by requiring that the deformation

should flatten out to an affine transformation far from all the landmarks. This flatness

constraint can be developed into the set of linear equations [94]

P T
S · C = 0, (B.3)

where PS is the source landmark coordinates arranged in a matrix, as follows:

PS =


pS11

I . . . pS1dim
I I

... . . .
...

...

pSn1
I . . . pSndim

I I

 (B.4)

This provides enough additional equations to make the system have full rank.
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Combining these components in the following way

Y =

[
D

0

]
(B.5)

L =

[
K PS

P T
S 0

]
(B.6)

W =



C

aT1
...

aTdim
bT


(B.7)

(B.8)

where the ai are the rows of A, and K is the matrix of kernel functions at each point

combination,

K =


g(pS1 − pS1) . . . g(pS1 − pSn)

... . . .
...

g(pSn − pS1) . . . g(pSn − pSn)

 (B.9)

it is possible to write a set of linear equations for the parameters of each spline,

L ·W = Y , and solve for the weights [31, 63, 94], W , as

W = L−1 · Y (B.10)

The classic spline interpolation can be relaxed to allow for some misfit at the

landmark points, by adding a multiple of the identity to the matrix K [177]. That

is, L becomes

L =

[
K + λI PS

P T
S 0

]
(B.11)

B.2 Problems with the existing implementation

The ITK system contained a kernel transform implementation which was suitable for

warping images, but did not integrate well into the ITK registration framework for
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two reasons. Primarily, the Jacobian of the transformation was not implemented.

Indeed, the code only contained this comment in the Jacobian method:

// TODO

// The Jacobian should be computable in terms of the matrices

// used to Transform points...

Without a Jacobian, gradient based optimizers cannot be used, and approaches such

as Powell’s method or Amoeba (Downhill Simplex) are not well suited for transfor-

mations with this many parameters.

A more serious problem was that the implementation required that the weights,

W needed to be recomputed each time the parameters were set. This is extremely

computationally inefficient when the class is used in an optimization framework. This

requirement arose because the source landmark positions were considered to be the

moving parameters. From the development in section B.1 it is clear that changing the

locations of PS requires recomputing K and therefore L and W . Furthermore, there

is not a clear way to take the derivative of F(x) with respect to the source parameter

positions, which is most likely why the Jacobian was not completed.

B.3 Changes

We reversed the role of the fixed and moving parameters, so that the SetParameters()

method updates the target landmarks rather than the source landmarks. In this case,

L−1 does not change when the moving parameters are updated, so it can be pre-

computed and cached. On each update of the parameters, Y needs to be updated,

and the weights W can be found through a matrix multiplication via Equation B.10.

This way, the parameters can be changed repeatedly in the optimization framework

at much less computational cost.

Furthermore, with this formulation, the Jacobian of the transformation becomes
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easy to calculate.

F(x) =
[
G(x) x1I . . . xdimI I

]
·W (B.12)

F(x) =
[
G(x) x1I . . . xdimI I

]
·L−1 · Y (B.13)

∂F(x)

∂φ
=

[
G(x) x1I . . . xdimI I

]
·L−1 · ∂Y (φ)

∂φ
(B.14)

∂F(x)

∂φ
=

[
G(x) x1I . . . xdimI I

]
·L−1 ·

[
Z

0

]
(B.15)

where Z is a negative n · d diagonal matrix with all diagonal entries −1.

Conceptually, this implementation supports the idea that the positions of the

source landmarks (or fixed parameters) are the positions of landmark points in the

coordinate system of the fixed image. The position of the target landmarks, (or

moving parameters) will then be the corresponding positions of these points in the

moving images. (The previous approach corresponded to the idea that the fixed

parameters were the positions of landmarks in the target image, and the moving

parameters were the locations of these landmarks in the coordinate system of the

fixed image.)
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Appendix C

Generating Meshes for Thin Plate

Splines

Kernel splines, including thin plate splines, need to be defined based on sets of matched

landmarks. Rather than manually matching landmarks, it can be useful to generate

sets of points relatively evenly spaced through an image which can be used to define

a kernel spline over the image. Two algorithms for generating evenly distributed

points were used in the experiments reported in Chapter 4. They give a set of points

that cover the space well, and are relatively unlikely to generate non-diffeomorphic

transformations.

C.1 Circular and Cylindrical Meshes

The first algorithm generates a set of points which are laid out as a set of staggered

concentric rings in 2D, and as a set of staggered concentric cylinders in 3D. This

algorithm was used to generate the landmarks for the thin plate spline transforms

used for the registration experiments in Chapter 4. The algorithm is described in

Algorithm 9, and images of the point positions are in Figure C.1
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Algorithm 9 Creating a set of staggered circular (2D) or cylindrical (3D) points.
For the 2D case, the zlevels are set to 1

1: Set number of rings, Nr, points per ring, Np, maximum radius, R, zlevels Nz, and
Z size Z

2: Set angular step ∆θ = 2π
Np

3: Set z step ∆z = Z
Nz−1

4: For z = 0 to Nz − 1 Do
5: For i = 1 to Nr Do
6: Set radius r = i · R

Nr
, offset o = ∆θ

2
· mod (i+ z, 2)

7: For j = 0 to Np − 1 Do
8: Add point at r,∆θ ∗ j + o, z where r,θ are in polar coordinates
9: End for

10: End for
11: End for

(a) 2D TPS point layout (b) 3D TPS point layout

Figure C.1 Point layout used for TPS transforms in Chapter 4
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C.2 Subdividing a Triangular Mesh

This method was used to create a mesh where the number of points could be controlled

very finely for the simple optimization timing experiments in Section 4.6.2. The

intention is to avoid long skinny triangles in the Delaunay triangulation of the point

set, as these would be prone to collapsing, resulting in a non-diffeomorphic transform.

The idea is to generate a point set where points can be added one by one from a list,

and any configuration of these points will be suitable for use as landmarks in a TPS.

Such a mesh can be generated by a recursive algorithm. At each level, n, the set

of points is all the points at the last level, n−1, plus all the midpoints of the edges in

their Delaunay triangulation. At level 0, a set of seven points is used, a center point

surrounded by a hexagon. If points are added from the set in order, they will tend to

densify the space evenly, and, since the Delaunay triangulation is used, long skinny

triangles are avoided. Figure C.2 illustrates this idea.

(a) 7 points (b) 20 points (c) 40 points (d) 80 points

Figure C.2 Different size sets of landmarks generated using the Delau-
nay based technique. The lines show the 3rd level mesh, which was used
as a base for this example. The 7 point case shows the zeroth level. The
20 point case is all the points from level 1 and below, plus one point from
level 2. The 40 and 80 point case show how adding the points in order of
creation gradually fills in the space without clustering of points.
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Appendix D

Extra graphs for comparison of

deformable registrations

This appendix contains certain graphs which were considered too repetitive to be

presented individually in Chapter 4
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Figure D.1 Distributions of errors remaining after registration of the
deformed Sagittal Brain Image using the 2D B-spline and TPS transforms,
and the synthetically deformed Phantom image using the 3D B-spline
and TPS transforms. The image difference measure used was mutual
information, results for other cost functions are similar. The graphs show
the distribution of errors over a 50× 50 grid (50× 50× 50 grid in 3D) of
points in the image extent. Point errors for all 25 runs have been combined
into one histogram for each set of scale factors. Vertical lines show the
median error. With all scale factors, reasonably successful registration has
been achieved, as shown by the distinct leftward shift in the distribution.
Overall case 0.1x produces a slightly, but statistically significantly smaller
median error. The 2D B-spline registration with gradient descent also
appears as Figure D.1
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Figure D.2 The graphs show the distribution of errors over a 50×50×50
grid of points evenly spaced over the image extent. The image difference
measure used was MSD. This result is selected as being typical of the
results of this experiment. The graph shows the distribution of distances
between points in a warped mesh of the balloon part of the phantom, and
the mesh of the balloon created from the target volume. The vertical lines
show the median of the error. Cases are (1) partially inflated to deflated,
(2) partially inflated to fully inflated, (3) fully inflated to deflated, (4)
fully inflated to partially inflated. For case 3, the median error for the
raw data is off the graph, at 5.19mm.
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Appendix E

Proof of the Boundedness of Image

Difference Measure Errors

To be considered an anytime algorithm, the quality of the answer reported by the

algorithm must increase as the amount of computation performed increases. In this

section it is shown that the maximum error decreases as the number of pixels pro-

cessed increases for the anytime formulations of the Mean Squared Difference (MSD)

and Mutual Information (MI) measures. The result when all pixels are processed is

considered to be the correct result, and the error, |Ep| to be the difference in mag-

nitude between the result reported at a particular amount of calculation and this

correct result. One assumption is required: that the pixel values in the images and

the derivatives of the transformation, ∇W (x), are bounded.

First consider a simple mean of N values, Vi,

M =
1

N
(V1 + V2 + V3 + ...+ VN) ,

where the Vi are bounded. That is there exists Vmin and Vmax such that ∀Vi : Vmin ≤
Vi ≤ Vmax. Let M(p) be the mean computed using the first p values, and M(N) be

the mean computed using all the values.

Theorem: The absolute value of the difference between a mean computed with p

values, and that computed with all N values is bounded, and this bound decreases as
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p increases. That is

∀q > p : max
Vi

|M(q)−M(N)| ≤ max
Vi

|M(p)−M(N)| (E.1)

Proof: The maximum difference will occur when all of the values used to compute

M(i) have one extreme value, and all the rest have the other. Without loss of gener-

ality, assume that the first p values have the value Vmax, and the rest have the value

Vmin. Then the maximum possible error is:

max
Vi

|M(p)−M(N)| =
1

p
pVmax −

1

N
pVmax −

1

N
(N − p)Vmin

=
1

N
[(N − p)Vmax − (N − p)Vmin]

=
N − p
N

[Vmax − Vmin]

which is bounded and decreases as p increases. Note that equality in Relation E.1 is

only achieved if all the Vi are equal, and the error is zero at all computation levels.

As the pixel values in the images of interest are bounded, their differences and

derivatives are also bounded. The MSD and its derivatives are means of bounded

terms, so the above theorem applies directly. Note that the derivative of the MSD

includes the derivative of the transformation in its values. This is why the assumption

that ∇W (x) is bounded is necessary.

For the MI measure, the joint distribution and its derivatives are averages of

bounded terms, so the theorem holds for those internal parameters. However, to

show that the error on the MI and its derivative is bounded, the mapping from these

intermediate values to the final ones must also be considered. Noting that a log of a

product is the sum of the logs:

A log

(
B

C ·D

)
= A log(B)− A log(C)− A log(D)

Thus the MI measure and its derivative can be expressed as a sum of terms of the

form:

Mi(p) log(Mj(p))
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where the Mi(p) and Mj(p) are means having the bounded error property described

above. Furthermore, the terms inside the log are constrained to be between 0 and 1,

and terms including a log of zero will be cancelled out. (See [61, p. 18]). Considering

a single term, let Ei(p) be the difference between Mi(p) and Mi(N). Then

|Mi(p) log (Mj(p))−Mi(N) log (Mj(N)) |

= |(Mi(N)− Ei(p)) log (Mj(p))−Mi(N) log (Mj(N))|

= |Mi(N) (log (Mj(p))− log (Mj(N)))− Ei(p) log (Mj(p))|

=

∣∣∣∣Mi(N)

(
log

(
Mj(p)

Mj(N)

))
− Ei(p) log (Mj(p))

∣∣∣∣
≤

∣∣∣∣Mi(N)

(
log

(
Mj(p)

Mj(N)

))∣∣∣∣+ |Ei(p) log (Mj(p))|

The second term is clearly never greater than Ei(p) and is therefore bounded and

decreases as p increases. For the first term, note that the maximum difference will

occur when Mj(p) = 1 and the remaining contributions to the mean are zero, so that

Mj(N) = N−p
N

. Therefore,∣∣∣∣Mi(N)

(
log

(
Mj(p)

Mj(N)

))∣∣∣∣ ≤ ∣∣∣∣log

(
N

p

)∣∣∣∣
The right hand side is clearly bounded and decreases as p increases. It can be con-

cluded that since the maximum absolute error on each term in the sum is bounded

and decreasing, that the maximum absolute error on the entire sum is also bounded

and decreasing. Therefore, the maximum absolute error in the MI measure and its

derivative is bounded and this bound decreases as the number of pixels used increases.
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Appendix F

Jacobian matrices of fixed/moving

warp parameters

In this section, it is shown how the
∂φf

∂φm
can be computed for the transforms used in

Chapter 7. This involves a number of multidimensional objects which can be consid-

ered as matrices, and as vectorizations of these matrices. To be clear in matters of

dimensionality Harshman’s matrix notation [95] is used. In this notation, all array

dimensions are represented as subscripts following the matrix name. Adjacent matri-

ces with the same subscript indicates a contraction (multiplication and summation)

along the corresponding dimension. (This is also known as the Einstein summation

convention.) For example,

AIJBI′J =
J∑
j=1

AijBi′j = A ·BT .

Note that I and I ′ are not the same index and thus no summation is performed on

them. Indexes that are grouped with parentheses represent the vectorization of those

two dimensions into one longer dimension. For example,

if AIJ =

[
1 2

3 4

]
then A(IJ) =


1

2

3

4

 .
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To avoid confusion between subscripts for summation, and modifiers to the names of

variables, a modified variable name such as φm will be written as φm
P

in this notation.

For brevity, when no summation or multiplication is involved, such as when a vector

is the argument of a function, the subscript will be omitted (e. g. MIJ(φ)). Finally,

δIJK represents the identity matrix, that is

δijk =

{
1 when i = j = k

0 otherwise.

Several transforms in common use in image registration problems have a matrix

transform of homogeneous coordinates at their core. That is, the transformation is

carried out using the following equation.[
λx̂D

λ

]
I

= TIJMJK(φ)T−1
KL ·

[
xD

1

]
L

, (F.1)

where xD are the original coordinates, x̂D are the transformed coordinates, TIJ is

a translation that manages the effective center of the transform, and MJK(φ) is

a function returning the homogeneous transformation matrix corresponding to the

parameters, φ. The transforms are composed through matrix multiplication, and

inverted by matrix inversion. It is necessary to find the parameters of the fixed

transform φf as a function of the parameters of the moving transform, φm. Using the

matrix operations yields,

φf
P

(φm) = φm
−1 ◦ φ̂m

= φP (MIJ(φm)MJK(φ̂m))

where MIJ(φ) is the matrix that corresponds to a set of parameters, φ; φ̂m is the

starting transform, and φP (M) is the function that returns the transformation pa-

rameters for a given matrix, M . So long as the transform center does not change, it

may be ignored for this discussion, since

[
TIJMJKT

−1
KL

]−1 [
TLMNMNT

−1
NP

]
=
[
TIJM

−1
JKNKNT

−1
NP

]
.
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Then the derivative of interest is

∂φf
P

∂φm
Q

=
∂φf

P

∂M(IJ)(φm)

∂M(IJ)(φm)

∂φm
Q

Noting that the derivative of the inverse of a matrix function of a scalar parameter a

is:
∂M(IL)(a)−1

∂a
= MIJ(a)−1∂MJK(a)

∂a
MKL(a)−1

and that

MIK(φf) = MIJ(φm)−1MJK(φ̂m),

results in

∂M(IM)(φf)

∂φm
Q

= MIJ(φm)−1 ·
∂MJK(φm)

∂φm
Q

· MKL(φm)−1 ·MLM(φ̂m) (F.2)

Note the indexes carefully – the final result is a matrix of size (IJ) × Q formed by

stacking up the vectorized results of Q multiplications of 2D matrices of size I × J .

Therefore to compute
∂φf

P

∂φm
Q

for a matrix based transform it is only required to know

∂φP

∂M(IJ)
and

∂M(IJ)

∂φP
for its particular parameterization.

F.1 Homogeneous transform

The parameterization of the homography used here is one commonly used in computer

vision (e. g. [12]), shown here for the 2D case. (The 3D case – not used in this paper –

can easily be developed by adding columns and rows corresponding to the additional

dimension.)

M(φ) =

 φ1 φ2 φ5

φ3 φ4 φ6

φ7 φ8 1

.


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There is a linear relationship between MIJ and φP which can be represented as a

matrix equation

cMIJ(φ) = A(IJ)PφP =

δDD′ 0DD′ 0D 0D 0D 0DD′

0D′ 0D′ 0 1 0 0D′

0DD′ δDD′ 0D 0D 0D 0DD′

0D′ 0D′ 0 0 1 0D′

0DD′ 0DD′ 0D 0D 0D δDD′

0D′ 0D′ 0 0 0 0D′


·φP

(IJ)P

(F.3)

The subscripts D,(D′) will consistently be used to indicate that there are a number

of rows (columns) equal to the space dimension.

To do the reverse and obtain φ from a matrix, the matrix must first be scaled so

that its lower right element is one. Then the inverse of Equation F.3 is clearly

φP (M) =
1

M3,3

A+
P (IJ)M(IJ)

where A+
P (IJ) is the pseudoinverse of A(IJ)P , so

φP (M) =


δDD′ 0D 0DD′ 0D 0DD′ 0D

0DD′ 0D δDD′ 0D 0DD′ 0D

0D′ 1 0D′ 0 0D′ 0

0D′ 0 0D′ 1 0D′ 0

0DD′ 0D 0DD′ 0D δDD′ 0D


M(IJ)

M3,3

(IJ)P

.

Then,
∂φP
∂M(IJ)

=
1

M3,3

A(IJ)P +
∂M3,3

∂M(IJ)

A+
P (IJ)M(IJ)
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and

∂φP
∂M(IJ)

=
1

M3,3

·

δDD′ 0D 0DD′ 0D 0DD′
−1
M3,3

M 1,2
D

0DD′ 0D δDD′ 0D 0DD′
−1
M3,3

M 4,5
D

0D′ 1 0D′ 0 0D′
−1
M3,3

M3

0D′ 0 0D′ 1 0D′
−1
M3,3

M4

0DD′ 0D 0DD′ 0D δDD′
−1
M3,3

M 7,8
D


(IJ)P

The necessary derivative,
∂φf

P

∂φm
Q

can now be calculated using Equation F.2.

F.2 Rigid 3D transform

A rigid 3D transform can also be represented as a matrix. However, the rigid trans-

forms form a subgroup of the matrix transforms, and consequently cannot be param-

eterized in terms of matrix elements. This renders the derivative quite non-linear in

the parameters.

Here the 3D case is developed, for an Euler angle parameterization of 3D rigid

transforms, which is used in the thesis. Euler angle parameterizations present flaws

when large rotations (near 90°) are present, but that is not the case for the problems

of interest in this thesis. The matrix for a given set of parameters is given by

AIJ(φ) =

[
RZ(φ3)RX (φ1)RY(φ2) φ4,5,6

0D′ 1

]
IJ

where Rα(φ) is a rotation matrix around the α axis by an angle φ.

For brevity in what follows, define s1 = sin(φ1), c1 = cos(φ1) and so forth. The
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matrix AIJ(φ) can be expanded as

AIJ(φ) =


c3c2 − s3s1s2 −s3c1 c3s2 + s3s1c2 φ4

s3c2 + c3s1s2 c3c1 s3s2 − c3s1c2 φ5

−c1s2 s1 c1c2 φ6

0 0 0 1


IJ

.

If c1 is small then

φP (A) =



sin−1(A3,2)

tan−1( A3,3

cos(sin−1(A3,2))
, −A3,1

cos(sin−1(A3,2))
)

tan−1( A2,2

cos(sin−1(A3,2))
, −A1,2

cos(sin−1(A3,2))
)

A1,4

A2,4

A3,4


; (F.4)

otherwise,

φP (A) =



sin−1(A3,2)

tan−1(A1,1, A2,1)

0

A1,4

A2,4

A3,4


(F.5)

(The criterion that |A3,2| < 0.99999999875 has been used to choose between Equa-

tions F.4 and F.4.)

Here tan−1(c, s) is the inverse tangent function defined for the full circle, where c

and s are the cosine and sine of the angle in question:

tan−1(c, s) =


sin−1(s) ∀ |c| > |s|, c > 0

π − sin−1(s) ∀ |c| > |s|, c < 0

cos−1(c) ∀ |c| < |s|, s > 0

− cos−1(c) ∀ |c| < |s|, s < 0

The derivative of tan−1(c, s), where c and s are dependent functions of some other
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variable, x, is

∂ tan−1(c(x), s(x))

∂x
=

{
1
c(x)

∂c(x)
∂x

∀ |c(x)| > |s(x)|
−1
s(x)

∂s(x)
∂x

∀ |c(x)| < |s(x)|

The derivatives of A(φ) and φ(A) can now be computed

∂A(IJ)(φ)

∂φP
=

−s3s2c1 −c3s2 − s3s1c2 −s3c2 − c3s1s2 0 0 0

s3s1 0 −c3c1 0 0 0

s3c1c2 c3c2 − s3s1s2 −s3s2 + c3s1c2 0 0 0

0 0 0 1 0 0

c3s2c1 −s3s2 + c3s1c2 c3c2 − s3s1s2 0 0 0

−c3s1 0 −s3c1 0 0 0

−c3c1c2 s3c2 + c3s1s2 c3s2 + s3s1c2 0 0 0

0 0 0 0 1 0

s1s2 −c1c2 0 0 0 0

c1 0 0 0 0 0

−c2s1 −c1s2 0 0 0 0

0 0 0 0 0 1


(IJ)P

(F.6)
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Let λ and λ̄ be indicator functions where λi = 1 iff |ci| ≥ |si| and λ̄i = (1− λi).

∂φP (A)

∂A(IJ)

T

=



0 0 0 0 0 0

0 0 −λ3

c1c3
0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 −λ̄3

c1s3
0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 −λ2

c1c2
0 0 0 0

1
c1

p q 0 0 0

0 −λ̄2

c1s2
0 0 0 0

0 0 0 0 0 1


P (IJ)

(F.7)

Where

p = λ2A3,1s1
c2|c3

1|
+ λ̄2A3,3s1

s2|c3
1|

and q = λ3A1,2s1
c3|c3

1|
+ λ̄3A2,2s1

s3|c3
1|

Equation F.4 is valid as long as the angles involved do not approach 90 degrees.

However, this is not a concern in this work since Equation F.7 is only ever evaluated

at φf = 0. At this point, all the cosine terms become one, and the sine terms become
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zero, allowing the simplification of Equation F.7 to

∂φP (A)

∂A(IJ)

T

=



0 0 0 0 0 0

0 0 −1 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 −1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1


P (IJ)

.

As in the previous case, this allows the calculation of
∂φf

P

∂φm
Q

using Equation F.2.
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