
A Parallel Displacement
 Operator

R. Brooks, J. Chen, D. Nussbaum, and J.-R. Sack

The Displacement Operator

Problem description Model:
1 32

4 65

Improving Computational Efficiency
Maximum Running time of parallel nodes

0.0s

10.0s

20.0s

30.0s

40.0s

50.0s

60.0s

70.0s

80.0s

90.0s

100.0s

1 node 2 nodes 4 nodes 8 nodes

T
im

e
(S

e
c

o
n

d
s

)

pacific (35939 vertices)

searctic (39242 vertices)

yukon (45529 vertices)

thelon (80713 vertices)

Large (165484 vertices)

Average performance of parallel nodes

0.0s

10.0s

20.0s

30.0s

40.0s

50.0s

60.0s

70.0s

80.0s

90.0s

100.0s

1 node 2 nodes 4 nodes 8 nodes

T
im

e
(s

e
c

o
n

d
s

)

pacific (35939 vertices)

searctic (39242 vertices)

yukon (45529 vertices)

thelon (80713 vertices)

Large (165484 vertices)

Figure 3: neighbourhood

Figure 4: areas of influence

Figure 5: constraints graph

Potential Future
Improvements

Frequently as the scale of representation is reduced it becomes difficult to
distinguish individual objects in a visualisation of spatial data. When this
happens, the displacement operator becomes important. In traditional
cartography, the cartographer would move and or reshape the objects in
question to achieve two goals:

1. the relative number, size and position of the objects is successfully
communicated to the end user

2. the objects are separated far enough so that the medium of
communication allows them to be successfully distinguished.

For example, consider the following group of islands. To visualize these
effectively at a given scale it is important to be able to observe that they are
physically separate. On a paper map the minimum gap that can be
successfully printed is about 0.2mm. (On screen the minimal gap tends to
be larger, but screen based cartography is not yet a mature field so it is
difficult to provide an exact figure)

The overall goal is to communicate the fact that there are islands present,
and their relative size and orientation. A map at a scale where the gaps
between objects are near the limits of visibility for the map should not be
used to make numeric measurements of those features. Therefore,
positional accuracy is secondary for this application. A great deal of
subjectivity is possible in the realization of a cartographic representation.
Throughout this paper, we will use an relatively simple island cluster as a
working illustration. Figure 1 shows this cluster as it exists in the 1:1 000
000 scale framework data [1] for Canada.

 [1] At the time the work was being done, the data was not yet published as
framework data. Since then the data has been published as the GeoBase
Level 0 Hydrology and is available from http://geogratis.cgdi.gc.ca.

Magnified, this island
cluster is easy to

understand

But with a line width
consistent with the final

scale, it is difficult to read

Figure 1

e
d

mmG
F ×

×
=

2

21

òò òò ××
×

=
2 1

22112
2211

2

)
),,,(

(
obj obj

dydxdydxe
yxyxd

G
F

vr r

Suppose that each object (island, mainland) emits a field resembling reverse
gravity. Then objects that are closely packed would experience a strong
repulsive force. Objects spaced further apart would experience a lesser degree
of repulsive force. In the usual formulation of Newtonian gravity, the
attraction between two bodies is defined as:

Equation 1 : Standard gravity formula; force operates along the shortest
path between centers of mass

where G is the gravitational constant, m and m are the masses of the two 1 2

objects in question, d is the distance between their centers of mass, and e is the
unit vector between their centers of mass. This formula is a simplification
however, and treats each object as though it was shrunk to a point. This works
properly so long as the objects are rigid and distance between them is very
large relative to their size.

In this case, the objects of greatest interest are close together relative to their
diameters. The objects are too close together for the usual set of formulae to
apply. Thus it is necessary to go back to first principles and develop an
integral formula for the force between the two objects (refer to Figure 2).
Fortunately for the purpose of this model, three simplifications can be made.
The objects can be assumed to be perfectly rigid, of constant density, and to not
rotate. An equation respecting these parameters is shown in Equation 2.

Equation 2 : Gravitational force when objects are close relative to their size

Two objects that are far apart relative to
their diameter can be approximated by
point masses at their centres of gravity. See
equation 1.

Two objects that are close together
relative to their diameter cannot be
approximated by point masses at their
centers of gravity. Different regions of the
objects are at such widely varying
distances from each other, that their
i n f l u e n c e m u s t b e c o n s i d e r e d
independently and integrated.
See equation 2.

Before being processed by the
d i s p l a c e m e n t a l g o r i t h m t h e
framework data was processed into a
form relevant to cartographic
representation. Select ion of
hydrologic features had been carried
out, and the data was separated into
linear and areal features. Islands,
both marine and freshwater resided
in the area feature file.

It was possible to reduce its
c o m p u t a t i o n a l c o m p l e x i t y
significantly using the following
assumptions. Polygons outside a
certain radius of each other have no
effect on one another. For this reason
it is possible to greatly reduce the
number of computations by grouping
the polygons into clusters before
computing the force acting on each
polygon.

To compute the distance vector between
a polygon pair, a simple vector between
the centroids or the two closest points is
not effective because each polygon may
be oddly shaped. An approximate
method used was to average the vectors
between the 5 closest pairs of vertices in
the boundary. The force is then
computed proportional to the areas and
inversely proportional to distance.
.Finally we sum the forces acting on a
polygon to determine its movement,
which is inversely proportional to its
area.

Given the displacement for each
polygon, the vertices of the polygons
are moved along the displacement
vector. In practice it was necessary to
modify the output of step 3 - by limiting
the maximum movement of a polygon -
to achieve a more reasonable result. It
was important in this step to retain the
original position of the polygon so that
step 6 could be carried out.

After the polygons are moved, it is
possible that topological problems
have been created. Intersections
could have been created between the
polygons. It is necessary to check
whether or not any pairs of polygons
intersect, and if they do, then correct
the problem that has been created.
Fortunately, since the objects are
moving away from one another this
problem occurs infrequently.

To correct any topological errors that
may have occurred, the intersecting
polygons are moved back to their
original position. After this
movement, it is necessary to check for
topological errors again as the act of
moving the polygon back into place
may have created another error.

First Implementation at the
National Atlas of Canada

Input the data Clustering
Compute Interactions

Move Polygons Check topology Fix Topological Problems

Improvements on ‘Quick and Dirty’ Approach
Although the software operated effectively in practice, it was clear from the beginning that more
efficiency should be possible. There were a number of potential sources of inefficiency.
Firstly, Perl is only a moderately efficient language. There are two sources of inefficiency in a Perl
implementation. Perl is not a true scripting language as it is compiled to machine code when
executed, however there is a performance hit on each execution as the code is compiled. A further
performance issue is due to Perl’s type flexibility. Although this makes for flexible coding, it means
that type must be determined at run time, which adds a few steps to every operation.
Arc/Info is the workhorse of the GIS world and is a dominant player in the high-end GIS market.
However, the author’s experience is that Arc/Info can be quite slow in operation. In fact, previous
experiments involving recoding Arc/Info based routines into Perl achieved between a 10 and 60
times increase in speed [1].
Finally, the algorithm appears to have great potential to be run in parallel. Each cluster can be
completely considered completely independently of every other cluster. In parallel computation,
reducing the amount of communication necessary between the nodes is an important way of
improving performance. Therefore, using this clustering as a means of distributing the necessary
computations results in minimal inter-node communications and thus in efficient operation.
Thus there were two avenues of investigation to be explored to improve the run-time of the software.
Firstly, porting to a lower level language should allow greater efficiency to be obtained. Secondly,
running the algorithm in parallel to improve performance significantly.

A Parallel C++ Implementation
Steps 3-5 of the algorithm were ported to C++[2], using the MPI (Message Passing Interface)
architecture [3] to be able to distribute the processing load. Our program takes as input the
intermediate file from step 2, and produces as output a set of moved polygons and a list of
intersections between them. See [4] for more information.
Using the MPI architecture, the algorithm could be run in parallel across a selected number of nodes.
The division of work amongst the nodes used a simple model, where each node was delivered all the
data, but only computed the necessary results for a its partition of the data. Where objects were not
in the same cluster, they could quickly be classified as not interacting by examining their cluster ids.

Analysis
An experiment was conducted to measure the efficiency gains made by the recoding of the
algorithm. Six datasets of varying sizes were chosen, and were run on the original NRCan system,
on the Carleton System in the original Perl, and on the Carleton System using the C++ version on 1, 2,
4 and 8 parallel nodes. The improvements due to parallelization are shown in the graphs to the
right..

Notes
[1] Brooks, R. (2) 2000. “Using Waltz Filtering for Rapid Stream Ordering of River Networks”.
Unpublished Assignment for Applied Artificial Intelligence.
[2] The work was partially supported by C3.ca, NCE: GEOIDE and NSERC.
[3] Gropp, W., Lush, E., Skjellum, A. 1994. Using MPI: Portable Parallel Programming with the
Message Passing Interface. MIT Press, Boston.

A

Defining a neighbourhood
To describe the relationships between these objects in an intuitive way, it
is necessary to quantify the idea of neighbourhood. It is proposed that
the set of objects that are directly related to a given polygon are those that
are touched by the largest enclosing convex polygon that does not
overlap any other features. This is shown in Figure 3; note that polygon A
in this example would not be a direct neighbour, but an indirect one.
A reasonable approximation of these relationships could be reached
using a skeleton structure of the intervening space between objects.
There are several possible such structures, most promising are the
Voronoi diagram [1] and Aurenhammer’s straight skeleton [2]. Such a
skeleton defines a tesselation of the background space such that each
area of space is associated with one and only one object. Those objects,
whose areas of influence are adjacent, are considered to be directly
related. This is illustrated in Figure 4.

The relationship graph
Given such an arrangement, it is clear that the result can be described as a
relationship graph. Each vertex in the graph represents an object in the
dataset, and each edge represents a relationship. Constraints may be
applied to each relationship, then as global parameters are changed, each
relationship must be re-evaluated to meet the constraints. Such a graph
is shown in Figure 5

Notes
[1] Held, M. 2000. ``VRONI: An Engineering Approach to the Reliable
and Efficient Computation of Voronoi Diagrams of Points and Line
Segments''. Computational Geometry: Theory and Application, 18(2):
95-123, 2001.
[2]Aichholzer, O. and Aurenhammer, F. 1998. “Straight skeletons for
general polygonal figures in the plane.” In A.M. Samoilenko, editor,
Voronoi's Impact on Modern Sciences II, volume 21, pages 7-21. Proc.
Institute of Mathematics of the National Academy of Sciences of
Ukraine, Kiev, Ukraine, 1998. Available from
http://www.cis.tugraz.at/igi/auren/publications.html. Last accessed
May 2, 2001.

Practical Results:

School of Computer Science, Carleton University, Ottawa, Ontario K1S5B6, Canada
Http://www.scs.carleton.ca/~sack

School of Computer Science, Carleton University, Ottawa, Ontario K1S5B6, Canada
Http://www.scs.carleton.ca/~nussbaum

School of Computer Science, Carleton University,
Ottawa, Ontario K1S5B6, Canada

Canada Centre for Remote Sensing, Natural Resources Canada,
Ottawa, Ontario K1A 0E9, Canada http://www.nrcan.gc.ca/~brooks

The implementation described above was used in the production of the National Atlas map:
Yukon Territory, Northwest Territories and Nunavut. The figures show first the raw data, the data just
after displacement, and finally the final printed map. Although not perfect, the displacement algorithm
described here was an important component of the production process for this map [1].

[1] Brooks, R. 2000. ‘National Atlas of Canada Producing First Map Using Automated Generalisation of
Framework Data.’ Cartouche, Number 39, Fall 2000.

Natural Resources Canada

Southern Baffin Island - Final Map
This shows the appearance of the same area on the final map. Many more cartographic processes besides
the displacement algorithm have been applied to produce the final appearance.

Southern Baffin Island - No Cartographic Generalization.
This shows the appearance of the data with no cartographic generalization applied. This is at approximately
twice the size of the intended map. Note the complex archipelagos along the coast.

Southern Baffin Island - Displacement of Islands
This shows the appearance of the data after the application of the displacement algorithm. The effect is
subtle - it can be best seen by comparing the relative separation of small island groups between this figure,
and the one above

	Page 1

